| Name: | | | | Date | Period | | |-------|--|---|-----------------|-------------------------|--------|--| | I. | Calc | culating Frequency & Wavel | ength of | f EM radiati | on | | | A. | <u>Defi</u> | ning variables | | | | | | | a. | Example: What is the variable that we use to represe | ent frequenc | y (Hz)? = <i>F (aka</i> | ιυ)? | | | | ь. | b. What is the variable that we use to represent wavelength $(m) = \mathbf{w}$ | | | | | | | c. | What is the variable that we use to represe Speed of Light $(m/s) = c$
Note: all Electromagnetic Spectrum Wave | | his same speed | | | | | d. | Speed of light is a constant. How many many | 's does light | travel? 3.00*108 | | | | В. | B. <u>Deriving equations</u> | | | | | | | | Given | the formula $C = \mathcal{F}^* \mathcal{W}$ (aka $c = v^* \lambda$) |) | | | | | 1. | What i | What is the formula for calculating $\mathcal{F}(aka v)$? $\mathcal{F} = \mathbf{c/w}$ | | | | | | 2. | What i | s the formula for calculating $\mathcal{W}(\!\lambda)$? | \mathcal{W} = | = c / f | | | | C. | | Calculating Frequency (\mathcal{F}) and Wavelength (\mathcal{W})
Show your work! Use a calculator and do the actual math – don't just leave the answer as a fraction! | | | | | | 1. | f=c/w
=3.00*
= 0.73 | Violet light has a wavelength of 4.10×10^{-12} m. What is the frequency? $f=c/w$ =3.00*10 ⁸ /4.10x10 ¹² = 0.73 x10 ²⁰ =7.3*10 ¹⁹ m | | | | | | 2. | f=c/w
=3.00*
=0.499 | Green light has a frequency of 6.01 x 10^{14} Hz. What is the wavelength? $f=c/w$ =3.00*10 ⁸ /6.01x10 ¹⁴ =0.499*10 ⁻⁶ m = 4.99*10 ⁻⁷ m | | | | | | 3. | What is the wavelength (in meters) of the electromagnetic carrier wave transmitted by <u>The Sports Fan</u> radio station at a frequency of 640 kHz?(Hint: convert kHz into Hz by multiplying by 10^3 .) $f=6.4\times10^{(3+2)}=6.4\times10^5$ w=3.00x10 ⁸ /6.4*10 ⁵ 0.47 x $10^{(8-5)}$ Hz =0.47 x 10^3 Hz = 4.7x 10^2 Hz | | | | | | 4. Calculate the wavelength of radiation with a frequency of 8.0×10^{14} Hz. Calculate the wavelet w=c/f =3.00x10⁸/8.0*10¹⁴ =0.375x10⁽⁸⁻¹⁴⁾ m =0.375x10⁻⁶ m =3.75X10⁻⁷ m