Challenge yourself

P(First shot) = 0.8 and P(Both shots) = 0.6.

The two shots are modelled as independent events, so $P(Both shots) = P(First shot) \times P(Second shot)$.

Therefore $0.6 = 0.8 \times P(Second shot)$

$$P(Second shot) = \frac{0.6}{0.8} = 0.75$$

You can now draw a tree diagram to show all the possible outcomes of two shots.

1st shot	2nd shot	Outcomes
0.8 Successful	0.75 Successful	SS
	0.25 Unsuccessful	SU
0.2 Unsuccessful	0.75 Successful	US
	0.25 Unsuccessful	UU

P(At least one shot) = 1 - P(UU) = 1 - 0.05 = 0.95