Theoretical and Percent Yield Worksheet 1. Given the following equation: K₂PtCl₄ + ____ NH₃ -----> ____ Pt(NH₃)₂Cl₂ + ___ - a) Balance the equation. - Determine the theoretical yield of KCl if you start with 34.5 grams of NH₃. Starting with 34.5 g of NH₃, and you isolate 76.4 g of Pt(NH₃)₂Cl₂, what is the percent yield? - 2. Given the following equation: $$H_3PO_4 + 3KOH ----> K_3PO_4 + 3H_2O$$ - a) If 49.0~g of H_3PO_4 is reacted with excess KOH, determine the percent yield of K_3PO_4 if you isolate 49.0~g of K_3PO_4 . - 3. Given the following equation: $$Al_2(SO_3)_3 + 6 NaOH ----> 3 Na_2SO_3 + 2 Al(OH)_3$$ - a) If you start with 389.4 g of $Al_2(SO_3)_3$ and you isolate 212.4 g of Na_2SO_3 , what is your percent yield for this reaction? - 4. Given the following equation: $$Al(OH)_3$$ (s) + 3 HCl (aq) -----> $AlCl_3$ (aq) + 3 H₂O (l) - a) If you start with 50.3~g of $Al(OH)_3$ and you isolate 39.5~g of $AlCl_3$, what is the percent yield? - 5. Given the following equation: $$K_2CO_3$$ + HCl -----> H_2O + CO_2 + KCl - a) Balance the equation. - betermine the theoretical yield of KCl if you start with 34.5 g of K₂CO₃. c) Starting with 34.5 g of K₂CO₃, and you isolate 3.4 g of H₂O, what is the percent yield? - 6. Given the following equation: $$H_2SO_4 + Ba(OH)_2 \longrightarrow BaSO_4 + H_2O$$ - a) If 98.0~g of H_2SO_4 is reacted with excess $Ba(OH)_2$, determine the percent yield of $BaSO_4$ if you isolate 213.7~g of - 7. Given the following equation: - a) If you start with 82.4 g of CaCl2 and you isolate 82.4 g of Ca3(PO4)2, what is your percent yield for this reaction? - 8. Given the following equation: $$Cr(OH)_3$$ + HI -----> CrI_3 + H_2O a) If you start with 50.3 g of $Cr(OH)_3$ and you isolate 39.5 g of CrI_3 , what is the percent yield?