| Instructions: Determine the type of Stoichiometry Problems (Moles & Mass to Mass Problems) Instructions: Determine the type of Stoichiometry problem (moles A _ moles B or mass A _ mass B), then use stoichiometry to solve for the quantity requested. 1. How many moles of NH ₃ are produced if 15.0 moles of N ₂ is reacted with an excess of H ₂ ? N _{2 (w)} + 3 H _{2 (w)} 2 NH _{3 (w)} 2. How many moles of silver (I) sulfide are formed when a 7.20 moles of silver reacts with sulfur? 2 Ag (w) + S (w) Ag ₂ S (w) 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (w) + 2 HCl (w) ZnCl ₂ (w) + H ₂ (w) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (w) + 2 NaI (w) 2 NaCl (w) + I ₂ (w) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? 2 KCl ₃ (w) + 3 O ₂ (w) + 3 O ₂ (w) | Name: | Block: | Date: | |--|--|------------------------------------|-------------------------------------| | then use stoichiometry to solve for the quantity requested. 1. How many moles of NH ₂ are produced if 15.0 moles of N ₂ is reacted with an excess of H ₂ ? N _{2 (g)} + 3 H _{2 (s)} 2 NH _{3 (g)} 2. How many moles of silver (I) sulfide are formed when a 7.20 moles of silver reacts with sulfur? 2 Ag (s) + S (s) Ag ₂ S (s) 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (s) + 2 HCl (s) ZnCl ₂ (s) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (s) 2 NaCl (s) + I ₂ (g) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? | IC Ch. 9: Worksheet – Stoichiometry Pro | oblems (Moles to I | Moles & Mass to Mass Problems) | | 2 NH _{3 (g)} 2. How many moles of silver (I) sulfide are formed when a 7.20 moles of silver reacts with sulfur? 2 Ag (g) + S (g) Ag ₂ S (g) 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? 2n (g) + 2 HCl (ga) ZnCl ₂ (g) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (g) 2 NaCl (g) + I ₂ (g) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate ((KClO ₃)? | Instructions: Determine the type of Stoichiomethen use stoichiometry to solve for the quantity | try problem (moles A
requested. | ு moles B or mass A 👝 mass B), | | How many moles of silver (I) sulfide are formed when a 7.20 moles of silver reacts with sulfur? 2 Ag (s) + S (s) Ag₂S (s) If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (s) + 2 HCl (sq) ZnCl₂ (s) + H₂ (g) How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl₂ (g) + 2 NaI (s) 2 NaCl (s) + I₂ (g) How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO₃)? | 1. How many moles of NH₃ are produced if 15 | i.0 moles of N₂ is rea | cted with an excess of H_2 ? | | 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (s) + 2 HCl (sq) ZnCl ₂ (s) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (s) 2 NaCl (s) + I ₂ (g) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? | N _{2 (g)} + 3 H _{2(s)} | $2~\text{NH}_{3~(g)}$ | | | 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (s) + 2 HCl (sq) ZnCl ₂ (s) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (s) 2 NaCl (s) + I ₂ (g) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? | | | | | 3. If 20.0 grams of zinc reacts with hydrochloric acid, how many grams of zinc chloride are produced? Zn (s) + 2 HCl (aq) | 2. How many moles of silver (I) sulfide are for | med when a 7.20 m | oles of silver reacts with sulfur? | | Zn (s) + 2 HCl (aq) ZnCl ₂ (s) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (s) 2 NaCl (s) + I ₂ (s) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? | 2 Ag (s) + S (s) | Ag ₂ S _(s) | | | Zn (s) + 2 HCl (aq) ZnCl ₂ (s) + H ₂ (g) 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl ₂ (g) + 2 NaI (s) 2 NaCl (s) + I ₂ (s) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KClO ₃)? | | | | | 4. How many grams of chlorine gas are needed to react with excess sodium iodide if you need to produce 10.0 grams of sodium chloride? Cl₂ (g) + 2 NaI (s) + I₂ (s) 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KCIO₃)? | 3. If 20.0 grams of zinc reacts with hydrochlor | ric acid, how many gı | rams of zinc chloride are produced? | | produce 10.0 grams of sodium chloride? Cl _{2 (g)} + 2 NaI (s) | Zn (s) + 2 HCl (aq) | ZnCl _{2 (s)} | + H _{2 (g)} | | produce 10.0 grams of sodium chloride? Cl _{2 (g)} + 2 NaI (s) | | | | | 5. How many grams of oxygen are produced in the decomposition of 5.00 grams of potassium chlorate (KCIO ₃)? | How many grams of chlorine gas are needed produce 10.0 grams of sodium chloride? | ed to react with exce | ss sodium iodide if you need to | | (KClO₃)? | Cl _{2 (g)} + 2 NaI (s) | 2 NaCl (s) | + I _{2 (5)} | | (KClO₃)? | | | | | 3 KCl + 3 C | | in the decomposition | of 5.00 grams of potassium chlorate | | 2 KClO _{3 (s)} + 3 O _{2 (g)} | 2 KClO _{3 (s)} 2 KCl _(s) | + 30 |) ₂ (g) |