Chapter 3 - Quiz Bank

Section 3.1: Congruent Triangles

(Given the statement ΔABC ≅ ΔDEF, which angle of ΔABC must be congruent to ∠F of ΔDEF?
(2) What conclusion may you draw if you know that $\triangle ABC \triangleq \triangle DEF$ and $\triangle DEF \cong \triangle GHK$?
(3) In △ABC, which side is included by ∠B and ∠C?
(4) In ΔABC, which angle is included by sides AC and BC? Exercises 3 & 4
In Exercises 5-7, use the given information to determine the reason (SSS, SAS, ASA, or AAS) why $\triangle MPN = \triangle MQR$.	
(5) $\overline{NM} \cong \overline{RM}$, $\angle 1 \cong \angle 2$, and $\angle N \cong \angle R$.
(6) NP ≅ RQ, NM ≅ RM, and M is the midpoint of PQ
(7) $\overline{NP} \cong \overline{RQ}$, $\angle P \cong \angle Q$, and M is the Exercises 5-7 midpoint of \overline{PQ}
(i	8) Of AAS and SSA, which one is a valid method for justifying that two triangles are congruent?
In Exercises 9	and 10, $\triangle XYZ \triangleq \triangle XWV$.
(!	9) If $XY = 15$ and $XW = 2x + 3$; find x.
(*	10) If $m \times 7 = 3y = 92$ and $m \times V = 2y \pm 4$ find y Exercises 9 fr 10