LESS	ON
11	5
CONTI	.U NUED

Reteaching with Practice

For use with pages 681-687

Exercises for Example 2 Write a recursive rule for the arithmetic sequence. d=-2

5.
$$a_1 = 2$$
 6. $a_1 = 0$ **7.** $a_1 = -3$ $d = 4$ $d = -2$ $d = 1$

7.
$$a_1 = -d$$

 $d = 1$

8.
$$a_1 = 12$$

$$d = -4$$

EXAMPLE 3 Writing a Recursive Rule for a Geometric Sequence

Write a recursive rule for a geometric sequence with $a_1 = 2$ and r = -3.

Use the fact that you can obtain a_n in a geometric sequence by multiplying the previous term by the constant ratio, r.

$$a_n = r \cdot a_{n-1}$$
$$= -3a_{n-1}$$

A recursive rule for the sequence is $a_1 = 2$, $a_n = -3a_{n-1}$.

Exercises for Example 3

Write a recursive rule for the geometric sequence.

9.
$$a_1 = 3$$

11.
$$a_1 = -2$$

12.
$$a_1 = -1$$

$$r = 8$$

10.
$$a_1 = 10$$
 $r = \frac{1}{2}$

$$r = 0.3$$

$$r = -2$$

EXAMPLE 4 Writing a Recursive Rule

Write a recursive rule for the sequence 2, 6, 10, 14, 18, . . .

SOLUTION

Notice that the common difference of the terms is 4. This tells you the sequence is arithmetic. Therefore, each term is obtained by adding 4 to the previous term.

A recursive rule is given by:

$$a_1 = 2, a_n = a_{n-1} + 4.$$

Exercises for Example 4 Write a recursive rule for the sequence.