Closed book. Clearly circle your choice. No work needs to be shown for multiple-choice questions. No partial credit is given for multiple-choice questions.

A 1.0 cm² cross-sectional area steel bar is heated up such that its length extends by by 0.1 mm. To extend a 2.0 cm² cross-sectional area steel bar by 0.1 mm, it must experience a temperature change ______ the temperature change of the 1.0 cm² cross-sectional area steel bar. (The bars have the same length.)

- (A) smaller than.(B) the same as.
- larger than.
- (D) (Not enough information is given.)

- [3.0 points.] A metal container is filled to the brim with a liquid. If the temperature decreases, under which conditions would the liquid overflow? (There are no changes in decreases, under which conditions phase.)
 (A) $3\sigma_{metal} > \beta_{tiquid}$.
 (B) $3\sigma_{metal} = \beta_{tiquid}$.
 (C) $3\sigma_{metal} < \beta_{tiquid}$.
 (D) (Two of the above choices.)
 (E) (All of the above choices.)
 (F) (None of the above choices.)

For questions (3)-(5), a 0.50 kg iron sample is at a temperature of 15° C, and 1.00 kg of water is at 35° C.

Specific heat of iron is 440 $\frac{J}{\text{kg} \cdot \text{K}}$. Specific heat of water is 4,190 $\frac{J}{\text{kg} \cdot \text{K}}$.

- [3.0 points.] If the 0.50 kg iron sample at 15° C is placed into the 1.00 kg of water at 35° C to reach thermal equilibrium in an insulated container, heat will be transferred:

 (A) from the 0.50 kg iron sample to the 1.00 kg of water.

 (B) from the 1.00 kg of water to the 0.50 kg iron sample.

 (C) (No heat is exchanged.)

 - (D) (Not enough information is given.)
- [3.0 points.] After reaching thermal equilibrium, the ____ had the greatest change

 - (A) 0.50 kg iron sample.

 (B) 1.00 kg of water.

 (C) (There is a tie.)

 (D) (Not enough information is given.)
- [3.0 points.] After reaching thermal equilibrium, the _____ had the greatest change in temperature.
 - (A) 0.50 kg iron sample.(B) 1.00 kg of water.

 - (C) (There is a tie.)(D) (Not enough information is given.)

Questions (6)-(10) are continued on the back of this page. Equations and constants: $T_{\rm C}=T-273.15\;.$

$$\alpha \Delta T = \frac{\Delta L}{L}$$
; $3\alpha \Delta T = \beta \Delta T = \frac{\Delta (\text{Volume})}{\text{Volume}}$.

11.11.29

Name (last, first)

PIN:

4-digit