Name: . Hour: .	Key	
	Date:	

Chemistry: Graham's Law

Do the following problems, showing your work and including all proper units.

1. If neon gas travels at 400 m/s at a given temperature, calculate the velocity of butane, C_pH₁₀, at the same temperature.

temperature.

$$N_{<} = 20$$
 $C_{4}H_{10} = 58$
 $\sqrt{\frac{m_{1}}{m_{2}}} = \frac{\sqrt{2}}{V_{1}} = \frac{\sqrt{2}}{\sqrt{5}} = \frac{\sqrt{2}}{700}$
 $\sqrt{V_{1}} = 23.5 \text{ M/C}$

No. = 20

CHH₁₀ = 58

W₂

V₃

V₄

V₇

V₇

V₇

V₈

V₈

V₈

V₈

V₉

V₁

V₁

V₂

V₁

V₂

V₂

V₃

V₄

V₇

V₇

V₈

V₈

V₈

V₈

V₉

V₁

V₁

V₂

V₁

V₂

V₁

V₂

V₁

V₂

V₃

V₁

V₁

V₂

V₁

V₂

V₁

V₂

V₃

V₁

V₂

V₁

V₂

V₃

V₁

V₁

V₂

V₁

V₂

V₁

V₂

V₁

V₂

V₁

V₂

V₃

V₁

V₁

V₂

V₃

V₁

V₁

V₂

V₁

V₂

V₁

V₂

V₁

V₂

V₁

V₂

V₃

V₁

V₂

V₃

V₄

V₁

V₂

V₃

V₄

V₁

V₂

V₃

V₄

V₇

V₇

V₈

explain your answer.

$$H_2 S := 2(1) + 32 = 34 \iff Snallest mass = highest violently$$
 $(8H_2 O_3 := 8(12) + 8(1) + 3(16) = 152$
 $(7H_1 O_2 := 7(12) + 6(1) + 16 = 106$

3. A nitrogen molecule travels at about 505 m/s at room temperature. Find the velocity of a helium atom at the same temperature.

 $M_2 = 28 \implies Sos M_1$
 $M_1 = V_2 \implies V_2$

$$M_2 = 28$$
 V , $SOSM_1$
 $M_2 = 4$
 $V_1 = 4$
 $V_2 = 4$
 $V_3 = 4$
 $V_4 = 4$
 $V_2 = 4$

Carbon dioxide molecule travels at 45.0 m/s at a certain temperature. At the same temper

5. Nitrogen gas effuses through an opening 1.59 times faster than does an unknown of

a. Calculate the molecular mass of the unknown gas.

$$N_2 = 28$$
 $\sqrt{\frac{m_1}{m_2}} = \frac{V_2}{V_1} = 1.59 = \sqrt{\frac{m_1}{28}}$ $\sqrt{\frac{m_1}{28}}$ $\sqrt{\frac{m_1}{28}}$ $\sqrt{\frac{m_1}{28}}$ b. Make a reasonable prediction as to what the unknown gas is.

$$C/2 ? = 70.9 \text{ and}$$

6. An unknown gas diffuses 1.62 times slower than does oxygen gas.

a. Calculate the molecular mass of the unknown gas

$$\frac{1}{\sqrt{2}} = \frac{32}{\sqrt{2}} \sqrt{\frac{m_1}{m_2}} = \frac{\sqrt{2}}{\sqrt{2}} = \frac{1.62}{\sqrt{32}} = \frac{m_1}{\sqrt{32}} = \frac{2.62 - \frac{m_1}{32}}{\sqrt{2}}$$

b. Make a reasonable prediction as to what the unknown gas is. $K_r = 83.8$ amu

6a. 84 a.m.u. 4. 52.8 m/s 5a. 71 a.m.u. 5b. Cl₂ Answers