Physics 261 Worksheet #1: Vector Review

The topic is vectors. Don't forget the back side!

For the following chart, let $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$ be vectors with components (in a particular Cartesian coordinate system!) given by (A_x, A_y, A_z) and (B_x, B_y, B_z) . If the basis vectors for that coordinate system are $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$, then we can also write $\vec{\mathbf{A}} = A_x\hat{\mathbf{i}} + A_y\hat{\mathbf{j}} + A_z\hat{\mathbf{k}}$. Let α be the angle between $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$. Let c > 0 and c' < 0 be scalar quantities. For the third column, use the specific values: $\vec{\mathbf{A}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, $\vec{\mathbf{B}} = -\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$, c = 2, and c' = -1/2.

	Geometric/Coordinate-Free	Coordinates	Specific
$\overrightarrow{\mathbf{A}}$			
$c\overrightarrow{\mathbf{A}}$			
$c'\overrightarrow{\mathbf{A}}$			
$\overrightarrow{\mathbf{A}}\perp\overrightarrow{\mathbf{B}}$			
$\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$			
$\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$			
$\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}$			
$\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$			
$\overrightarrow{\mathbf{A}} imes\overrightarrow{\mathbf{B}}$			
$ \overrightarrow{\mathbf{A}} $			
$\overrightarrow{\mathbf{A}} + \overrightarrow{\mathbf{B}} = \overrightarrow{\mathbf{B}} + \overrightarrow{\mathbf{A}}$			