Unit Circle and Trig Function GSP Tour

-Open the UnitCircleTrig file posted on the website and explore it to fill in the following blanks. On a clean sheet of notebook paper, you must write this out (no print outs) and underline, highlight or use a different color for the words that go in the blanks. Not doing so will result in no credit.

When I open the gsp file I notice a circle centered on a graph. The x-axis has
units of and goes from about to about This is for plotting
the trig functions, and because there are degrees in a
complete circle. The y-axis goes from about to about because it represents
the radius of the unit circle which by default is unit(s).
The unit circle (and any circle) can be graphed by using either a regular function
based on the, such that the radius is equivalent to the of the two
sides squared. In the case of the unit circle the function would be $y = $ To
graph a circle with radius 'r', the function would change to $y = $ A circle
itself is not a true function because it does not pass the test or in other
words there are multiple values for each value. In this case however we are taking the root of $(r^2 + x^2)$ to solve for when we have y^2 . We know
taking the root of $(r^2 + x^2)$ to solve for when we have y^2 . We know
that anytime we take the square root of a number we wind up with results, one is
and one is because the square of a positive number as well as the
negative of that number with both give us the same number (i.e. $(3)^2 = 9$ and $(-3)^2 = 9$).
This means that the function for a circle is essentially two functions, one that has
values that are positive and one that has 'y' values that are The
form of the circle equation is: $y^2 + x^2 = r^2$. Adding to the values would move
the circle up while subtracting from the values would move it down. Adding to
the values would move the circle to the right while subtracting from them would
move it left.
The trig functions can also be used to graph a circle by splitting the 'x' and 'y'
values into equations (vector eq's). The trig functions explain the lengths
of the of the triangles formed by the central angle of the circle: (the variable
used for that angle is commonly). To find the leg that is the 'x' length we use
the function and to find the leg that is the 'y' length we use the
function.
The conversion factor to change from degrees to radians is: 1 radian =
and to convert from radians to degrees (solve for degrees algebraically): 1 degree =
As we move around the circle we are at radians when we are at 180
degrees. When we are at radians we are at 53 degrees. When we are at 3.5π
radians we are at degrees and when we are at 0.3π radians we are at
degrees.
(click show sin then drag point 'x' or click the 'Move around the circle' button)
Observing what happens with the triangle and the graph of sin of the angle theta,
notice that the values on the x-axis represent and on the y-axis represent the
which is the of the circle at 90 and 270 degrees. The sin function is
plotted as we move along the x axis. If we start at 0 degrees the y value, which is the
same as the side of the triangle formed by angle theta, is equal to