- 21. **Answer (A):** The product of the zeros of f is c/a, and the sum of the zeros is -b/a. Because these two numbers are equal, c=-b, and the sum of the coefficients is a+b+c=a, which is the coefficient of x^2 . To see that none of the other choices is correct, let $f(x)=-2x^2-4x+4$. The zeros of f are $-1\pm\sqrt{3}$, so the sum of the zeros, the product of the zeros, and the sum of the coefficients are all -2. However, the coefficient of x is -4, the y-intercept is 4, the x-intercepts are $-1\pm\sqrt{3}$, and the mean of the x-intercepts is -1.
- 22. Answer (D): If $n \le 2007$, then $S(n) \le S(1999) = 28$. If $n \le 28$, then $S(n) \le S(28) = 10$. Therefore if n satisfies the required condition it must also satisfy

$$n \ge 2007 - 28 - 10 = 1969.$$

In addition, n, S(n), and S(S(n)) all leave the same remainder when divided by 9. Because 2007 is a multiple of 9, it follows that n, S(n), and S(S(n)) must all be multiples of 3. The required condition is satisfied by 4 multiples of 3 between 1969 and 2007, namely 1977, 1980, 1983, and 2001.

Note: There appear to be many cases to check, that is, all the multiples of 3 between 1969 and 2007. However, for 1987 $\leq n \leq$ 1999, we have $n+S(n) \geq$ 1990 + 19 = 2009, so these numbers are eliminated. Thus we need only check 1971, 1974, 1977, 1980, 1983, 1986, 2001, and 2004.

- 23. Answer (A): Let $A=(p,\log_a p)$ and $B=(q,2\log_a q)$. Then AB=6=|p-q|. Because \overline{AB} is horizontal, $\log_a p=2\log_a q=\log_a q^2$, so $p=q^2$. Thus $|q^2-q|=6$, and the only positive solution is q=3. Note that $C=(q,3\log_a q)$, so $BC=6=\log_a q$, from which $a^6=q=3$ and $a=\sqrt[6]{3}$.
- 24. **Answer (D):** Note that F(n) is the number of points at which the graphs of $y=\sin x$ and $y=\sin nx$ intersect on $[0,\pi]$. For each $n,\sin nx\geq 0$ on each interval $[(2k-2)\pi/n,(2k-1)\pi/n]$ where k is a positive integer and $2k-1\leq n$. The number of such intervals is n/2 if n is even and (n+1)/2 if n is odd. The graphs intersect twice on each interval unless $\sin x=1=\sin nx$ at some point in the interval, in which case the graphs intersect once. This last equation is satisfied if and only if $n\equiv 1\pmod 4$ and the interval contains $\pi/2$. If n is even, this count does not include the point of intersection at $(\pi,0)$. Therefore F(n)=2(n/2)+1=n+1 if n is even, F(n)=2(n+1)/2=n+1 if $n\equiv 3\pmod 4$. Hence

$$\sum_{n=2}^{2007} F(n) = \left(\sum_{n=2}^{2007} (n+1)\right) - \left\lfloor \frac{2007 - 1}{4} \right\rfloor = \frac{(2006)(3 + 2008)}{2} - 501 = 2,016,532.$$

25. **Answer** (E): For each positive integer n, let $S_n = \{k : 1 \le k \le n\}$, and let c_n be the number of spacy subsets of S_n . Then $c_1 = 2$, $c_2 = 3$, and $c_3 = 4$. For $n \ge 4$, the spacy subsets of S_n can be partitioned into two types: those that contain n and those that do not. Those that do not contain n are precisely the spacy subsets of S_{n-1} . Those that contain n do not contain either n-1 or n-2 and are therefore in one-to-one correspondence with the spacy subsets of S_{n-3} . It follows that $c_n = c_{n-3} + c_{n-1}$. Thus the first twelve terms in the sequence (c_n) are $2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, and there are <math>c_{12} = 129$ spacy subsets of S_{12} .

OR

Note that each spacy subset of S_{12} contains at most 4 elements. For each such subset a_1,a_2,\ldots,a_k , let $b_1=a_1-1,\,b_j=a_j-a_{j-1}-3$ for $2\leq j\leq k$, and $b_{k+1}=12-a_k$. Then $b_j\geq 0$ for $1\leq j\leq k+1$, and

$$b_1 + b_2 + \dots + b_{k+1} = 12 - 1 - 3(k-1) = 14 - 3k.$$

The number of solutions for (b_1,b_2,\ldots,b_{k+1}) is $\binom{14-2k}{k}$ for $0\leq k\leq 4$, so the number of spacy subsets of S_{12} is

$$\binom{14}{0} + \binom{12}{1} + \binom{10}{2} + \binom{8}{3} + \binom{6}{4} = 1 + 12 + 45 + 56 + 15 = 129.$$