Gas Law Formulas

$$R = 0.082058 \frac{\text{L} \cdot \text{atm}}{\text{mol} \cdot \text{K}} = 8.3145 \frac{\text{J}}{\text{mol} \cdot \text{K}} = 62.4 \frac{\text{L} \cdot \text{mm Hg}}{\text{mol} \cdot \text{K}}$$

$$T(K) = T(^{\circ}C) + 273.15$$

Formula	When to be applied
$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$	Combined gas law Use when there is a <i>change</i> in conditions, but not in number of moles.
PV = nRT	Ideal gas law Must match the units with the value of R!
$d = \frac{m}{V} = \frac{PM_m}{RT}$	Density of an ideal gas Must know the molar mass (M_m) of the gas.
$\chi_a = \frac{n_a}{n_{total}}$	Mole fraction of component a in a mixture Use in gas mixture problems.
$P_{\text{total}} = P_a + P_b + \dots$	Dalton's law of partial pressures Use to find the pressure exerted by one gas component in a mixture
$P_a = \chi_a \times P_{total}$	of ideal gases.
$\frac{3}{2}RT = \frac{1}{2}mu^2$	Kinetic energy of an ideal gas Shows that average kinetic energy is measured by temperature.
$u = \sqrt{\frac{3RT}{M_m}}$	RMS speed of an ideal gas Molar mass (M_m) must be in kg/mol in this formula to yield speed in m/s.
$\frac{\text{rate of a effusion}}{\text{rate of b effusion}} = \sqrt{\frac{M_b}{M_a}}$	Graham's Law of Effusion Use to find the relative rate of effusion of gases a & b at a given temperature.

- 1) Consider a gas mixture of Ne and Ar ($x_{Ne} = 0.40$) is in a rigid, 50-L vessel at 10 atm and at 22°C.
 - a) What is the partial pressure of Ar in kPa?
 - b) What is the mass of the gas in the container?
 - c) If the temperature were to rise to 88° C, what would the gas pressure be?
- 2) At STP, 700. mL of a gas has a mass of 1.452 g.
 - a) What is the molar mass of the gas?
 - b) If the temperature and pressure increased by 25%, what is the new gas volume?
- 3) Consider dry air at STP with the following composition:

78.00% (by volume) 21.00% 0.800%

 N_2 O_2 Ar CO₂ 0.200%

- a) What is the *molar* density (mol/L) of air at STP?
- b) What is the density of air at STP in g/L?