1.	What is the specific heat of a substance that absorbs 2.5×10^3 joules of heat when a sample of 1.0×10^4 g of the substance increases in temperature from 10.0° C to 70.0° C?
2.	How many grams of water would require 2.20×10^4 joules of heat to raise its temperature from 34.0° C to 100.0° C? The specific heat of water is $4.18 \text{ J/g}.^{\circ}$ C
3.	If 200. grams of water is to be heated from 24.0°C to 100.0°C to make a cup of tea, how much heat must be added? The specific heat of water is 4.18 J/g·°C
4.	A block of aluminum weighing 140. g is cooled from 98.4°C to 62.2°C with the release of 1080 joules of heat. From this data, calculate the specific heat of aluminum.
5.	A cube of gold weighing 192.4g is heated from 30.0°C to some higher temperature, with the absorption of 226 joules of heat. The specific heat of gold is 0.030 J/g.°C. What was the final temperature of the gold?
6.	A total of 54.0 joules of heat are absorbed as 58.3 g of lead is heated from 12.0°C to 42.0°C. From these data, what is the specific heat of lead?
7.	The specific heat of wood is 2.03 J/g·°C. How much heat is needed to convert 550 g of wood at -15.0°C to 10.0°C?
8.	What is the total amount of heat needed to change 2.25 kg of silver at 0.0°C to 200.0°C? The specific heat of silver is 0.129 J/g·°C