Translate and Classify Conic Sections P. 650

Parabolas, circles, ellipses, and hyperbolas are called **conic sections** or simply **conics**, because they are formed when a plane intersects a double napped cone. (See p. 649 for illustrations)

Translating conics means to graph a conic section whose only vertex or center is not the origin.

Standard Form of Equations of Translated Conics

The point (h, k) is the vertex of the parabola and the center of the other conics.

Circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Horizontal Axis

Vertical Axis

Parabola

$$(y-k)^2 = 4p(x-h)$$

$$(x-h)^2 = 4p(y-k)$$

Ellipse

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Hyperbola

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

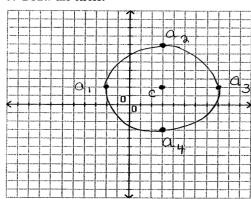
$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

Graph the equation. Identify the important characteristics of the graph.

1. $(x-3)^2 + (y-2)^2 = 25$

Circle

C(3,2)


r=5

a, (-2,2)

a₃ (8, 2)

ay (3, -3)

- 1. Classify the type of conic.
- 2. Name and plot the center (h, k).
- 3. Name the radius.
- 4. Use the radius to graph and label four points on the circle.
- Draw the circle.

