CAPE Mathematics Unit 1 Worksheet 1: The Real Number System

- 1. Given that $p = \sqrt{2}$ and $q = \sqrt{3}$, express $\frac{\sqrt{50} \sqrt{12}}{\sqrt{8} + \sqrt{75}}$ in terms of p and q as simply as possible.
- 2. Simplify these expressions by rationalising their denominators. (a) $\sqrt{\frac{1}{8}}$ (b) $\frac{5}{\sqrt{3}-1}$ (c) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$ (d) $\frac{3\sqrt{5}-4}{2\sqrt{5}+1}$

(a)
$$\sqrt{\frac{1}{8}}$$

(b)
$$\frac{5}{\sqrt{3}-1}$$

(c)
$$\frac{\sqrt{3}+1}{\sqrt{3}-1}$$

(d)
$$\frac{3\sqrt{5}-4}{2\sqrt{5}+1}$$

3. Simplify the following, leaving your answers in surd form:

(a)
$$(2\sqrt{5}+1)(3\sqrt{5}-2)$$

(a)
$$(2\sqrt{5}+1)(3\sqrt{5}-2)$$
 (b) $(\sqrt{2}-1)^2(3\sqrt{2}+5)$

4. Find
$$\sum_{r=n+1}^{2n} r^2$$
 in terms of n.

- 5. Without using calculators or tables, show that $\sqrt{11} + \sqrt{7} = \frac{4}{\sqrt{11} \sqrt{7}}$.
- 6. Prove, by Mathematical Induction, that $n^2 > 2n$ for all integers $n \ge 3$.
- 7. Without using calculators or tables, evaluate $(\sqrt{2}+1)^3 (\sqrt{2}-1)^3$.
- 8. Prove, by Mathematical Induction, that:
- (i) $10^{n} 1$ is divisible by 9 for all positive integers n.
- (ii) $8^n + 6$ is divisible by 14 for all positive integers n.
- 9. Let $S_n = \sum_{r=1}^n r$ for $n \in \mathbb{N}$. Find the value of n for which $3S_{2n} = 11S_n$.

Note:
$$\sum_{r=1}^{n} r = \frac{1}{2} n(n+1)$$

- 10. Calculate $\sum_{r=1}^{40} (3r-1)^2$.
- 11. Prove by Mathematical Induction and also by using the sigma method:

(i)
$$\sum_{r=1}^{n} (4r-1) = n(2n+1)$$

(ii)
$$\sum_{r=1}^{n} r(r+1)(r+3) = \frac{1}{12} n(n+1)(n+2)(3n+13)$$

12. Prove by Mathematical Induction: $\sum_{r=1}^{n} \frac{1}{(3r-2)(3r+1)} = \frac{n}{3n+1}$