1. Two wave pulses of symmetrical shape approach one another on a string, as shown in the diagram.

Which one of the following diagrams could not be observed at a later time?

Answer (b). The displacement in the middle of the combined pulse is half rather than double the two individual displacements.

2. A wave of frequency $5.0~\mathrm{Hz}$ travels along a string with a speed of $20~\mathrm{m/s}$. The phase difference between the oscillations of the string separated by $1.0~\mathrm{m}$ along the wave is

(a) $\pi/4$ (b) $\pi/2$ (c) π (d) 2π

Answer (b). The wavelength is 20/5=4 m. 1 m separation is one quarter of a wavelength which is 90° or $\pi/2$ out of phase.

- 3. Two strings, one thick and the other thin, are connected to form one long string. A wave travels along the string and passes the point where the two strings are connected. Which of the following does not change at that point:
 - (a) frequency
 - (b) propagation speed
 - (c) amplitude
 - (d) wavelength

Answer (a). Frequency depends only on the source. The speed changes in a new medium and as a result all other variables will change.