Molarity Worksheet

- 1. Sea water contains roughly 28.0 g of NaCl per liter. What is the molarity of sodium chloride
- 2. What is the molarity of 245.0 g of H_2SO_4 dissolved in 1.00 L of solution?
- 3. What is the molarity of 5.30 g of Na₂CO₃ dissolved in 400.0 mL solution?
- 4. What is the molarity of 5.00 g of NaOH in 750.0 mL of solution? 5. How many moles of Na₂CO₃ are there in 10.0 L of 2.0 \underline{M} solution?
- 6. How many moles of Na₂CO₃ are in 10.0 mL of a 2.0 M solution?
- 7. How many moles of NaCl are contained in 100.0 mL of a 0.20 M solution?
- 8. What weight (in grams) of NaCl would be contained in problem 7?
- 9. What weight (in grams) of $\rm H_2SO_4$ would be needed to make 750.0 mL of 2.00 M solution?
- 10. What volume (in mL) of $18.0 \text{ M} \text{ H}_2\text{SO}_4$ is needed to contain $2.45 \text{ g H}_2\text{SO}_4$?
- 11. What volume (in mL) of 12.0 M HCl is needed to contain 3.00 moles of HCl?
- 12. How many grams of $Ca(OH)_2$ are needed to make 100.0 mL of 0.250 M solution?
- 13. What is the molarity of a solution made by dissolving 20.0 g of H_3PO_4 in 50.0 mL of solution?
- 14. What weight (in grams) of KCl is there in 2.50 liters of 0.50 M KCl solution?
- 15. What is the molarity of a solution containing 12.0 g of NaOH in 250.0 mL of solution?
- 16. Determine the molarity of these solutions:a) 4.67 moles of Li₂SO₃ dissolved to make 2.04 liters of solution.
 - b) 0.629 moles of Al_2O_3 to make 1.500 liters of solution.
 - c) 4.783 grams of Na₂CO₃ to make 10.00 liters of solution.
 - d) 0.897 grams of $(NH_4)_2CO_3$ to make 250 mL of solution.
 - e) 0.0348 grams of PbCl2 to form 45.0 mL of solution.
- 17. Determine the number of moles of solute to prepare these solutions:
 - a) 2.35 liters of a 2.00 M Cu(NO₃)₂ solution.
 - b) 16.00 mL of a 0.415-molar Pb(NO₃)₂ solution.
 - c) 3.00 L of a 0.500 M MgCO3 solution.
 - e) 6.20 L of a 3.76-molar Na₂O solution.
- 18. Determine the grams of solute to prepare these solutions:
 - a) 0.289 liters of a 0.00300 M $Cu(NO_3)_2$ solution.
 - b) 16.00 milliliters of a 5.90-molar Pb(NO₃)₂ solution.
 - c) 508 mL of a 2.75-molar NaF solution.
 - d) 6.20 L of a 3.76-molar Na₂O solution.
 - e) 0.500 L of a 1.00 M KCl solution.
- f) 4.35 L of a 3.50 M CaCl₂ solution. 19. Determine the final volume of these solutions:
 - a) 4.67 moles of Li_2SO_3 dissolved to make a 3.89 M solution.
 - b) 4.907 moles of Al₂O₃ to make a 0.500 M solution.
 - c) 0.783 grams of Na₂CO₃ to make a 0.348 M solution.
 - d) 8.97 grams of $(NH_4)_2CO_3$ to make a 0.250-molar solution.
 - e) 48.00 grams of PbCl2 to form a 5.0-molar solution.