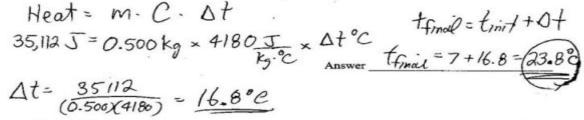
-			
C	hemi.	stry	II

Review Unit 6

6. Give	n the equation:	C12H22O11	+ 1202	>	12CO2	+	11H ₂ O	+	5638 kJ
---------	-----------------	-----------	--------	---	-------	---	--------------------	---	---------

How much heat is released during the formation of 9.6 moles of CO₂?

b. How much heat is released during the formation of 0.036 moles of H₂O?


c. If 1026 grams of C₁₂H₂₂O₁₁ are consumed, how much heat is released?

d. If 23.76 grams of CO₂ are produced, how much heat is released?

$$23.76g CO_2 \times 1 \frac{mol CO_2}{44.09 CO_2} = 0.54 \frac{mol CO_2}{12 \frac{mol CO$$

Calculate the amount of heat (in Joules) required to warm 350.0 g of water from 30°C to 35°C. (Heat Capacity (C) for H₂O is 4180 J/kg ·°C)

35.112 kJ of heat are added to a 500.0 gram sample of water initially at 7°C. Calculate the final temperature of the water sample. Be careful with units!

Page 4 of 4