Notes on	Factoring	hy Createst	Common Factor	•

Name_

Perhaps, the process of <u>factoring by removing the greatest common factor</u> can be best stated as the **reverse distributive property**. In the distributive property, one is <u>multiplying</u> a certain factor to all of the terms. In factoring by GCF, one is <u>dividing</u> all of the terms by the GCF.

Consider this expression which utilizes the distributive property: $5x^2(4x^4 + 3)$.

After simplifying using the distributive property, you get $20x^6 + 15x^2$.

This section will now demonstrate how to factor by removing the GCF.

Let's now take your answer to the problem above: $20x^6 + 15x^2$.

Using what was learned in the last lesson, what is the GCF of the two terms $(20x^6 \text{ and } 15x^2)$?

Again, remember that this process is like the reverse distributive property.

So, let's now write the GCF in front of parentheses and divide (instead of multiplying) each of terms by it.

$$20x^{6} + 15x^{2}$$
= _____(

As it turns out, this process yields the original question in the problem above.

Factor the greatest common factor: $8y^5 - 12y^3 + 4y$.

The GCF is 4y, so it will be placed in front of the parentheses, and all of the terms in the expression will be divided by 4y.

lationship between	en x and y)	1-49 odd pg. 62-63	8 v ⁵ = 12 i R	elations and Functions	PRC	Coordinate Plane (Re		
*s ~~p~	F4:	(Di D)	runcuons (Do	main and Kange)	Dependent and	Independent Variabl		
ues and Com	ments	Chanton I account:		<u>ufatprer "" Lesstir it i</u>	meand Comments	Stanuarus Acu		
4	2.2	Linear Equations	1.0	Standard Form		1-1		
7 odd pg. 68-69						T : T:		
	Linear Fui		10-					
Sep		r	x and v interce	nts (at x-int v=0) (at v-	int x=01			
J /								
Stope		' 1.0 \ Change i	n y over the change i	n x (Δy/Δx)	1-23 odd pg.	Short 2.3		
Workbook p	Wook		77 CCB	m = v	N/a	,		
	hook page 0	morkoook page >				-		
X1 - X2								
Progress Grades Due Oniz 2-1 through 2-3								