BIOLOGY: Chapter 9-Cellular Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. |
1. | Which of the following is the correct sequence of events in cellular respiration? | |--------|---| | | a. glycolysis → fermentation → Krebs cycle | | | b. Krebs cycle \rightarrow electron transport \rightarrow glycolysis | | | glycolysis → Krebs cycle → electron transport | | | d. Krebs cycle → glycolysis → electron transport | |
2. | Which of the following is released during cellular respiration? | | | a. oxygen | | | b. air | | | c. energy | | | d. lactic acid | |
3. | Cellular respiration uses one molecule of glucose to produce | | | a. 2 ATP molecules. | | | b. 34 ATP molecules. | | | c. 36 ATP molecules. | | | d. 38 ATP molecules. | |
4. | What is the correct equation for cellular respiration? | | | a. $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O + Energy$ | | | b. $6O_2 + C_6H_{12}O_6 + \text{Energy} \rightarrow 6CO_2 + 6H_2O$ | | | c. $6CO_2 + 6H_2O \rightarrow 6O_2 + C_6H_{12}O_6 + Energy$ | | _ | d. $6CO_2 + 6H_2O + Energy \rightarrow 6O_2 + C_6H_{12}O_6$ | |
5. | Cellular respiration releases energy by breaking down | | | a. food molecules. | | | b. ATP. c. carbon dioxide. | | | d. water. | | 6. | | |
О. | What are the reactants in the equation for cellular respiration? a. oxygen and lactic acid | | | b. carbon dioxide and water | | | c. glucose and oxygen | | | d. water and glucose | | 7. | Which of these is a product of cellular respiration? | | | a. oxygen | | | b. water | | | c. glucose | | | d. all of the above | |
8. | Which of these processes takes place in the cytoplasm of a cell? | | | a. glycolysis | | | b. electron transport | | | c. Krebs cycle | | | d. all of the above | |
9. | Glycolysis provides a cell with a net gain of | | | a. 2 ATP molecules. | | | b. 4 ATP molecules. |