## Specific Heat and Heat Capacity Worksheet

| The temperature of 335 g of water changed from $24.5^{\circ}$ C to $26.4^{\circ}$ C. How much heat did this sample absorb? c for water = $4.18 \text{ J/g}^{\circ}$ C (ans. $2.66 \text{ kJ}$ )                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How much heat in kilojoules has to be removed from 225g of water to lower its temperature from $25.0^{\circ}$ C to $10.0^{\circ}$ C? (ans. $-14.1$ kJ)                                                                   |
| To bring 1.0kg of water from 25°C to 99°C takes how much heat input? (ans. 309 kJ)                                                                                                                                       |
| An insulated cup contains 75.0g of water at 24.00°C. A 26.00g sample of metal at 82.25°C is added. The final temperature of the water and metal is $28.34$ °C. What is the specific hear of the metal? (ans 0.971 J/g°C) |
| A calorimeter has a heat capacity of 1265 J/°C. A reaction causes the temperature of the calorimeter to change from 22.34°C to 25.12°C. How many joules of heat were released in this process? (ans. 3.52 kJ released)   |
| What is the specific heat of silicon if it takes 192J to raise the temperature of 45.0g of Si by $6.0^{\circ}\text{C}$ ? (ans. $0.71~\text{J/g}^{\circ}\text{C}$ )                                                       |
|                                                                                                                                                                                                                          |