Advanced Algebra 2: CH variation and other common functions DIRECT and INVERSE VARIATION FUNCTION INTRODUCTION

Direct Variation: (k is the constant of proportionality)

y varies directly with x. y = kx

Note that this is a linear function through the origin.

y varies directly with the square of x. $y = kx^2$

Note that this is a quadratic function through the origin.

y varies directly with the cube of x. $y = kx^3$

Note that this is a cubic function through the origin.

y varies directly with x the nth power. $y = kx^n$

Note that this is a nth degree polynomial through the origin.

Example 1: Suppose y varies directly with x and y = 25 when x = 10. Write the function of this relationship and determine the value of y when x = 16.

Solution: y = kx and with substitution: 25 = k(10) which implies $k = \frac{25}{10} = \frac{5}{2}$

So the function is $y = \frac{5}{2}x$ and $y = \frac{5}{2}(16) = 20$ when x = 16.

Example 2: Suppose y varies directly with the cube of x and y = 100 when x = 4. Write the function of this relationship and determine the value of y when x = 10.

Solution: $y = kx^3$ and with substitution: $100 = k(4)^3 \Rightarrow 100 = k(64)$ which implies $k = \frac{100}{64} = \frac{25}{16}$.

$$k = \frac{100}{64} = \frac{25}{16}$$

So the function is $y = \frac{25}{16}x^3$ and $y = \frac{25}{16}(10)^3 = \frac{25}{16}(1000) = \frac{3125}{2}$ when x = 10.

Complete problems 1 and 5 from section 7.11