Dynamics Worksheet #1 - Newton's Law of Universal Gravitation - 1. Find the force of gravity between two 74.0kg physics students that are sitting 85.0cm apart. - 2. Find the force of gravity between a cubic meter of water (1000kg) and the Sun. The Sun's mass is 1.99 x 10^{30} kg and is 1.50×10^{11} m away. - 3. Find the force of gravity between the same cubic meter of water and the Moon. The Moon's mass is 7.36×10^{22} and is 3.84×10^{8} m away - 4. What is the force of gravity on a 24.0kg table. - 5. What would happen to the force of gravity in question #4 if the distance between the table and the center of the Earth was: - a) tripled? b) halved? - 6. The Sun's mass is 1.99×10^{30} kg and it has a radius of 6.96×10^{8} m. What is the Sun's gravitational field strength at its surface? 7. | Object | Mass (kg) | Radius (m) | Dist. To Sun (m) | Force of Gravity
between the Sun and
the Object (N) | Gravitational Field
Strength at the
surface of the object
(N/kg) | Weight of an
80.0kg student
on this object
(N) | |---------|-----------------------|--------------------|-----------------------|---|---|---| | Moon | 7.36×10^{22} | 1.74×10^6 | 1.50×10^{11} | | | | | Venus | 4.87×10^{24} | 6.05×10^6 | 1.08×10^{11} | | | | | Earth | 5.98×10^{24} | 6.37×10^6 | 1.50×10^{11} | | | | | Mars | 6.40×10^{23} | 3.40×10^6 | 2.28×10^{11} | | | | | Jupiter | 1.90×10^{27} | 7.15×10^7 | 7.78×10^{11} | | | | 8. What is the gravitational field strength at the top of Mt. Everest which is 8400m above sea level?