BALANCING CHEMICAL EQUATIONS ANSWER

Name:	Date:
$2~\mathrm{H_2} + \mathrm{O_2} \rightarrow 2~\mathrm{H_2O}$	
Is the reaction balanced?	
= Yes	
How many hydrogen atoms are needed to produce two H₂O molecules?	
= 4	
What is the product?	
$= H_2O$	
How many oxygen molecules are needed to produce two	H ₂ O molecules?
= 1	
How many hydrogen molecules are needed to produce to	wo H ₂ O molecules?
= 2	
What are the reactants?	
$= H_2$ and O_2	
Why is there not a coefficient in for O_2 ?	
= When the coefficient would be "1", it is omitted.	
How many oxygen atoms are needed to produce two H ₂ C) molecules?
= 2	
What is the number "2" in front of the H_2 (and H_2 0) called	ed?
= Coefficient	