6	Solve linear and simple polynomial equations by trial and improvement methods.	Solve equations such as $x^2 + x = 5$, usi calculator.
	Solve simple inequalities on a number line.	List the values of n where n is a whole number such that $-10 < 2n \le 20$.
7	Use the rules of indices for positive integer values.	Simplify expressions such as: $2x^2 + 3x^2, 2x^2 \times 3x^3, (3x^2)^3$, and $4a (3a - 3x^2)^3$
	Understand and use a wider range of formulae and functions.	Use the formula $T = 2\pi \sqrt{\frac{1}{g}}$ to calcula variable given the other.
· •	Solve a wider range of polynomial equations by trial and improvement methods.	Solve $x^3 + x = 20$ by such a method.
	Solve a wider range of linear inequalities.	Solve $3n + 4 < 17$.
	Solve simultaneous linear equations.	
	* :	
8	Manipulate simple algebraic expressions.	Find common factors such as $a^2x + ax^2 = ax (a + x)$.
		Transform formulae such as $V = IR$, $v = u + at$. Multiply out two brackets $(ax + b) (cx + d)$.
	Use the rules of indices for negative and fractional values.	Use $x^0 = 1$, $y^{-3} = \frac{1}{y^3}$, $\frac{x^2}{x^3} = \frac{1}{x} = x^{-1}$
9	Express general laws in symbolic form.	Work with direct proportion - OHM' inverse proportion - BOYLE's law; ar inverse square law.
10	Manipulate a range of algebraic expressions as needed in a variety of contexts.	Rearrange $x^2 + 3x - 2 = 0$ to give the iterative fo $x_{n+1} = \frac{2}{(x_n+3)}$. Simplify
		$\frac{1}{x+2} + \frac{1}{x-3}$

Show that $x^2 - 6x + 10 = (x - 3)^2 + 1 \ge 1$.