Molar Mass 2 Directions: Answer the following questions on a separate piece of paper and attach it to this worksheet. ## Part I – Molar Mass - of a substance is the mass (in grams) of 1 mol of the substance. - The ______ of a substance is the mass (in g. The molar mass of a substance can be obtained by _____ the atomic masses of the component atoms. - 3. Calculate the molar mass for each of the following substances: - a. methane, CH₄ - b. calcium nitrate, Ca(NO₃)₂ - c. ammonium sulfate, (NH₄)₂SO₄ - d. ethyl alcohol, C₂H₅OH - e. iron(III) sulfate, Fe₂(SO₄)₃ - f. chlorine dioxide, ClO₂ - g. iron(II) sulfate, FeSO₄ - h. strontium nitrate, Sr(NO₃)₂ - i. barium hydride, BaH₂ ## **Part II – Molar Mass Calculations** - 4. Calculate the number of moles of the indicated substance in each of the following samples. - a. 4.25g of phenol, C₆H₆O b. 4.25g of acetylene, C₂H₂ - c. 4.01g of lithium hydroxide, LiOH - d. 10.0g of sodium chloride, NaCl - e. 2g of ammonium chloride, NH₄Cl - 5. Calculate the mass in grams for each of the following samples. - a. 1.91×10^{-3} mol of benzene, C_6H_6 b. 1.91×10^{-3} mol of acetylene, C_2H_2 - c. 2.27 mol of calcium nitrate, Ca(NO₃)₂ - d. 1.50 mol aluminum iodide, AlI₃ - e. 4.00 mol of glucose, C₆H₁₂O₆ - 6. Calculate the number of molecules present for each of the following samples. - a. 4.29 mol of nitrogen dioxide, NO₂ - b. 4.29g of nitrogen dioxide, NO₂ c. 1.95 x 10⁻¹⁰ mol of hydrogen fuoride, HF d. 1.95 x 10⁻¹⁰ g of hydrogen fuoride, HF - e. 4.61 g of ammonia, NH₃ - 7. Calculate the volume for each of the following samples in their gas phase at STP (standard temperature and pressure). - a. 2.00 mol of neon - b. 2.00 g of neon - c. 5.00 mol of nitrogen dioxide - d. 5.00 mol of nitrogen monoxide - e. 5.00 g of nitrogen monoxide