Molar Mass 2

Directions: Answer the following questions on a separate piece of paper and attach it to this worksheet.

Part I – Molar Mass

- of a substance is the mass (in grams) of 1 mol of the substance.
- The ______ of a substance is the mass (in g.
 The molar mass of a substance can be obtained by _____ the atomic masses of the component atoms.
- 3. Calculate the molar mass for each of the following substances:
 - a. methane, CH₄
 - b. calcium nitrate, Ca(NO₃)₂
 - c. ammonium sulfate, (NH₄)₂SO₄
 - d. ethyl alcohol, C₂H₅OH
 - e. iron(III) sulfate, Fe₂(SO₄)₃
 - f. chlorine dioxide, ClO₂
 - g. iron(II) sulfate, FeSO₄
 - h. strontium nitrate, Sr(NO₃)₂
 - i. barium hydride, BaH₂

Part II – Molar Mass Calculations

- 4. Calculate the number of moles of the indicated substance in each of the following samples.

 - a. 4.25g of phenol, C₆H₆O
 b. 4.25g of acetylene, C₂H₂
 - c. 4.01g of lithium hydroxide, LiOH
 - d. 10.0g of sodium chloride, NaCl
 - e. 2g of ammonium chloride, NH₄Cl
- 5. Calculate the mass in grams for each of the following samples.

 - a. 1.91×10^{-3} mol of benzene, C_6H_6 b. 1.91×10^{-3} mol of acetylene, C_2H_2
 - c. 2.27 mol of calcium nitrate, Ca(NO₃)₂
 - d. 1.50 mol aluminum iodide, AlI₃
 - e. 4.00 mol of glucose, C₆H₁₂O₆
- 6. Calculate the number of molecules present for each of the following samples.
 - a. 4.29 mol of nitrogen dioxide, NO₂

 - b. 4.29g of nitrogen dioxide, NO₂
 c. 1.95 x 10⁻¹⁰ mol of hydrogen fuoride, HF
 d. 1.95 x 10⁻¹⁰ g of hydrogen fuoride, HF

 - e. 4.61 g of ammonia, NH₃
- 7. Calculate the volume for each of the following samples in their gas phase at STP (standard temperature and pressure).
 - a. 2.00 mol of neon
 - b. 2.00 g of neon
 - c. 5.00 mol of nitrogen dioxide
 - d. 5.00 mol of nitrogen monoxide
 - e. 5.00 g of nitrogen monoxide