Hertzsprung-Russell Diagram Exercise I

Α.	cti	· -:	.	
~	JUI	vı	Ly	

Plotting near stars and bright stars on a color magnitude diagram

Science Standards:

Energy & Matter, Systems & Interactions, Stability & Equilibrium

Objectives:

☐ The student will describe differences between <i>Near</i> and <i>Bright</i> stars visible. ☐ The student will discern a relationship between temperature and brightness. ☐ The student will correlate the evolution of stars to the HR Diagram plotted.
Materials:
 □ Photocopies of Bright Stars Table □ Photocopies of Near Stars Table □ Photocopies of Student Answer Sheets □ Graph Paper □ Two different colored pencils/pens

Introduction:

There are essentially two ways to describe the brightness of stars; apparent magnitude and absolute magnitude. Apparent magnitude is the brightness of a star as seen from Earth; absolute magnitude is how bright a star would be if it were 32.6 light years (10.0 pc) away. For historical reasons, astronomers still call the brightest stars magnitude 1 stars, the next brightest 2, then 3, 4, 5, and on down to the dimmest naked-eye stars, magnitude 6 stars. This backwards scale is now defined as mathematically as:

brightness of star 1 = difference in magnitude brightness of star 2 (2.512)