Optical Isomerism: Example lesson plan

Age group:

Learning Objectives: Students will discover that compounds containing chiral carbon atoms are

non-superimposable on their mirror image.

Key Words and Phrases: optical isomerism, chiral carbon atom, non-superimposable mirror image,

amino acids, plane-polarised light, Polaroid, laevorotatory, dextrorotatory,

racemic mixture, stereoselective

Resources Needed: Class set of student worksheets.

Molecular Model Kits – 10 sets of 1 carbon, 1 hydrogen, 1 fluorine, 1

chlorine, 1 bromine and 4 single bonds.

Demonstration – The optical activity of sucrose: A pair of polaroid sunglasses (or two polaroid filters), 1 x 400cm³ beaker, overhead projector, about 250g of *D*-sucrose (table sugar). See the link below for full details.

Teacher activity	Student activity	Time
Starter Activity		10
Give out worksheets.		min.
Be prepared to write down displayed formulae as	Students draw lines to match up	
examples of structural and geometrical isomerism on the	formulae and type of isomerism.	
board.	·	
Quickly check that everyone has got the answers right.		
Ask students if they have any general questions about		
isomerism.		
Model Making Activity		15
Initially students will probably think that their models are	Check they have the right number	min.
all identical. They may need to be prompted to compare	of atoms to start with.	
their models very closely. A good way of doing this is to	Build bromochlorofluoromethane.	
slot two models together so that the carbon atoms are		
touching. They should then see that two of the other		
atoms are 'the wrong way round'.		
Give everyone the opportunity to classify their model as	Compare their model with those	
one isomer or the other.	of others.	
Point out that the isomers are mirror images.		
Go through the idea of drawing the structures using	Draw the 3D structures of the two	
wedge-shaped bonds on the board.	isomers using wedge-shaped	
Check students are drawing the 3D displayed formulae	bonds.	
correctly.	Draw the 3D structures of the	
	alanine isomers.	
<u>Demonstration</u>	l	20
Carry out the demonstration activity 'The optical activity	Watch the demonstration.	min.
of sucrose' from Classic Chemistry Demonstrations:	Write down observations.	
http://media.rsc.org/Classic%20Chem%20Demos/CCD-		
13.pdf		
Question the students to check they have understood		
how this shows that the sucrose solution is a single		
optical isomer. Ask what would happen if we were to		
shine plane-polarised light through a racemic mixture.		
(Nothing, there would be no net rotation.)		

Extension activity: Make models of alanine and thalidomide

