Question:

The potential energy of a particle is given by the expression $U(r) = 2r^{5/2} + 3$, where r is the position of the particle. What is the function that describes the conservative force F acting on this particle?

a.
$$\frac{4}{7}r^{7/2} + 3r$$

b.
$$-\frac{4}{7}r^{7/2} - 3r$$

c.
$$5r^{3/2}$$

d.
$$-5r^{3/2}$$

e.
$$5r^{3/2} + 3r$$

©2009, Richard White. LearnAPphysics.com

Answer:

The correct answer is d. For conservative forces, potential energy is described using the work integral, $\Delta U = -\int_{x_i}^{x_f} F \cdot dx$. The force F, then, can be described by the integral

$$F = -\frac{dU}{dx}$$
. In this case:

$$F = -\frac{dU}{dx}$$

$$F = -\frac{d}{dx} \left(2r^{5/2} + 3 \right)$$

$$F = -5r^{3/2}$$