Scientist:	Date:	Period:

Alien Periodic Table: Lab1

Objective:

Create an alien periodic table based on chemical and physical properties and compare the arrangement of the alien periodic table elements to similar Earth elements.

Background Information:

In the early 19th century, scientists began arranging elements according to similar physical and chemical properties. The scientist who had the greatest success was a Russian chemist, Dmitri Mendeleev. He arranged the elements according to increasing atomic mass as well as in columns according to similar properties.

Imagine that scientists have made radio contact with life on a distant planet. The planet is composed of many of the same elements as are found on Earth. But the inhabitants of the planet have different names and symbols for the elements. The radio transmission gave data on the known chemical and physical properties of 30 that belong to Groups 1, 2, 13, 14, 15, 16, 17 and 18. You need to place the alien elements into a blank periodic table based on these properties.

Periodic Table of the Elements																			
	(based on $^{12}_{~\rm e}{\rm C}=12.0000)$ Group												Representative Elements						
,	1 1 Abertic number SL symbol 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															18 8A			
13 14 15 16 17												He							
2	Li	Be	Tran	Transition Metals									B Beren 1081	C Street	N Name 10257	O Ontropin 16	F Presser	Ne Nego 20.000	
3	Na	Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	88	10	11 1B	12 2B	AI	Si	P	S	CI North	Ar	
4	K	Ca	SC Sc	Ti 11 11 12 12 12 12 12 12 12 12 12 12 12 1	29 Venether 10042	Cr Cr	Mn Saloso	Fe	CO Cota mage	Ni Ni maga	Cu	Zn	Ga	Ge	As	Se	Br.	Kr	
5	Rb Rb	Sr Sr	Y Yirkin mass	Zr zrakn	Nb	Mo	TC	Ru	Rh Rh	Pd.	Ag Ag	Cd	in.	Sn	Sp. s	Te.	S3 Lotte 125.905	Xe	
6	Cs cate	Ba	La La	Hf	Ta	74 W	Re	Os	ir See	Pt Pt	Au	Hg,	TI	Pb	Bi	Po Pdalen zego	At.	Rn	
7	Fr	Ra	Ac	Rf	Db	Sq	Bh	Hs	Mt						Hoto			nmetals	
Inner Tansition Metals Lanturide series																			
				\	Ce	Pr		Pm	Sm	Eu es	Gd	Tb	Dy	Ho	Er Str	Tm	Yb	Lu	
				\	Th	Pa	U U Unarion Zatoro	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No.	Lr	
	Activide series																		