General Biology Lecture Outline

Lecture 12

Overview: Energy Use

- Ch. 8: Respiration
 - Photosynthesis vs. respiration
 - Overview of cellular respiration
 - Glycolysis
 - Fermentation pathways

ATP & Energy

- Autotrophs
- Heterotrophs
- Energy
 - Acquired by photosynthesis
 - Converted to ATP
 - Stored in larger molecules
 - Broken down to make ATP

Photosynthesis vs. Respiration

Photosynthesis

- · Stores energy in sugars
- Uses CO₂ & water
- · Increases mass
- · Requires light
- · In cells with chlorophyll
- · Releases oxygen
- · Makes ATP with energy from light

Respiration

- · Releases energy from sugars
- · Releases CO₂ & water
- Decreases mass
- · Doesn't require light
- In all living cells
- Uses oxygen (if aerobic)
- · Makes ATP with energy from sugars

Assignment 1

- Think, Pair, Share
- Topic: Cellular respiration did not develop in cells until after photosynthesis had been established. Fermentation pathways were used instead. Why didn't cellular respiration develop sooner?

Cellular Respiration

- Requires glucose & O2
 - Releases CO₂ & H₂O
- Energy released gradually → ATP

Assignment 2

- Topic: In cellular respiration, the breakdown of one glucose molecule releases 686 kcal of energy.
 - The energy stored in each ATP is 7.5 kcal. How much energy is stored in all ATP (36 total)?
 - What is the efficiency of aerobic respiration (the energy in ATP / the energy released × 100%)?
 - What happens to the energy that is lost?

Efficiency of Cellular Respiration

- · More efficient than most processes
 - E.g., energy in gasoline to car motion only 20% - 30% efficient

Oxidation-Reduction

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O (+ energy)$$

- Hydrogen atoms (H⁺ + e⁻) transferred from C₆H₁₂O₆ to O₂
 - Glucose is oxidized (electrons lost)
 - Oxygen is reduced (electrons gained)

Oxidation-Reduction

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O (+ energy)$$

- Oxidizes glucose to CO₂
 - Releases energy: energy in glucose → ATP
 - Requires coenzymes to carry electrons
 - NAD⁺ + $2e^{-}$ + H⁺ \rightarrow NADH
 - FAD + $2e^- + 2H^+ \rightarrow FADH_2$

Cellular Respiration

- Glycolysis (anaerobic)
 - Glucose → 2 pyruvate
 - · To fermentation if no oxygen available
 - NADH
 - 2 ATP (net)