Naming Compounds

Aim: To understand why it is necessary to have a system for naming compounds

Binary compounds- Compounds composed of two elements

- Two classes
 - o Compounds that contain metals and nonmetals
 - o Compounds that contain two metals

Naming Compounds that Contain a Metal and Nonmetals

Aim: To learn to name binary compounds of a metal and nonmetal

- Metals lose electrons to become cations
- Nonmetals gain electrons to become an anion

Metal + Nonmetal = Binary Ionic Compound
(+) (-)

- Type I compounds-metals that form **ONLY** one type of cation
- Type II compounds- Metals that can form two or more cations that have different charges

Rules for naming Type I Compounds

- 1. The cation is always named first and the anion second
- 2. A simple cation (obtained from a single atom) takes its name from the name of the element. Ex. Na⁺ is called sodium in the names of compounds containing this ion.
- 3. A simple anion (obtained from a single atom) is named by taking the first part of the element name (the root) and adding –ide. Thus Cl ion is called chloride

Noble gases are the least reactive; therefore they do not form compounds

Octet rule-In most chemical reactions, atoms tend to match the s and p electron configuration of noble gases. The atoms want to have their p orbital filled.

Type I				Nonmetals					
	Group 1	Group 2	Group 3		Gr	oup 15 Group	16 Group	17	
Charge	1+	2+	3+	Charge	3-	2-	1-		
	Most	Most							
	reactive reactive				Common Simple Cations and Anions				
				Catio	ns	Name	Anion	Name	
When you form ionic compounds there is no net charge-				$\mathrm{H}^{\scriptscriptstyle{+1}}$		Hydrogen	H^{-1}	hydride	
	Na ⁺ C	-	NaCl	Li^{+1}		Lithium	F^{-1}	fluoride	
Charge	(+1) (-1	/	0	Na^{+1}		Sodium	Cl ⁻¹	chloride	
Sodium Chloride				K^{+1}		Potassium	${ m Br}^{-1}$	bromide	
	3	_		Cs^{+1}		Cesium	I -1	iodide	
	Al ³⁺ I -		AII_3	Be ²⁺		Beryllium	O 2-	oxide	
Charge		-1) =	0	Mg^{2+}		Magnesium	S 2-	sulfide	
	Al	uminum io	dide	Mg^{2+} Ca^{2+}		Calcium			
Remember to switch your charges and place as subscripts when you write your ionic compounds				Ba^{2+}		Barium			
				$A1^{3+}$		Aluminum			
				Ag^{+1} Zn^{2+}		Silver			
				Zn^{2+}		zinc			