A Shape Problem

How many points with **integer coordinates** are there on the **boundary** of the *n*-dimensional generalisation of a triangle (ie. triangle, pyramid, ...) with the following conditions;

Case 1: Vertices
$$(0, 0, ..., 0)$$
 and $x_i = (0, ..., 0, \frac{2n}{i}, 0, ..., 0)$ for $1 \le i \le n$.

Case 2: Vertices
$$(0,0,...,0)$$
 and $x_i = (0,...,0,\frac{2n+1}{i},0,...,0)$ for $1 \le i \le n$.

where x_i has the non-zero coordinate in the i^{th} spot. Think of them as even and odd cases. I realised halfway through writing this that it's a little confusing, so here's what I mean in more detail;

Example 1: Triangle

n=2. Case 1 has vertices (0,0),(4,0) and (0,2). Case 2 has vertices (0,0),(5,0) and $(0,\frac{5}{2})$ We're looking for all points with integer coordinates lying on vertices or edges.

Example 2: Pyramid

n=3. Case 1 has vertices (0,0,0), (6,0,0), (0,3,0) and (0,0,2). Case 2 has vertices $(0,0,0), (7,0,0), (0,\frac{7}{2},0)$ and $(0,0,\frac{7}{3})$. We're looking for all points with integer coordinates lying on vertices or edges **or faces**.