

| NAME       |      |          | DATE |  |
|------------|------|----------|------|--|
| Reteaching | with | Practice |      |  |

# For use with pages 533-538

GOAL

Use the quadratic formula to solve a quadratic equation and use quadratic models for real-life situations

# VOCABULARY

The solutions of the quadratic equation  $ax^2 + bx + c = 0$  are given by the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ when } a \neq 0 \text{ and } b^2 - 4ac \ge 0.$$

You can read this formula as "x equals the opposite of b, plus or minus the square root of b squared minus 4ac, all divided by 2a."

# EXAMPLE 1

### Using the Quadratic Formula

Solve  $x^2 + 3x = 4$ .

You must rewrite the equation in standard form  $ax^2 + bx + c = 0$  before using the quadratic formula.

$$x^2 + 3x = 4$$
$$x^2 + 3x - 4 = 0$$

$$1x^2 + 3x + (-4) = 0$$

$$x = \frac{-3 \pm \sqrt{3^2 - 4(1)(-4)}}{2(1)}$$

$$x = \frac{-3 \pm \sqrt{25}}{2}$$

$$x = \frac{-3 \pm 5}{2}$$

Write original equation.

Rewrite equation in standard form.

Identify 
$$a = 1$$
,  $b = 3$ , and  $c = -4$ .

Substitute values into the quadratic formula: a = 1, b = 3, and c = -4.

The equation has two solutions:

$$x = \frac{-3+5}{2} = 1$$
 and  $x = \frac{-3-5}{2} = -4$ 

Find the value of  $b^2 - 4ac$  for the equation.

1. 
$$3x^2 - 8x - 1 = 0$$

$$2x^2 + 5x - 2 = 0$$

5. 
$$x^2 - 6x + 4 = 0$$

3. 
$$15x^2 - 10x + 1 = 0$$
  
6.  $5x^2 - 12x + \frac{1}{2} = 0$ 

4. 
$$4x^2 + x - 2 = 0$$

7. 
$$4x^2 - 13x + 3 = 0$$
  
10.  $3x^2 + 7x - 20 = 0$ 

8. 
$$2x^2 + 7x + 3 = 0$$
  
11.  $-4x^2 + x + 14 = 0$ 

**9.** 
$$-x^2 + x + 30 = 0$$
  
**12.**  $2x^2 - x - 2 = 0$ 

13. 
$$-2x^2 + 3x - 1 = 0$$

**14.** 
$$2x^2 + 10x - 5 = 0$$

**15.** 
$$-6x^2 + 4x - \frac{1}{3} = 0$$