$\underline{Electromagnetic\ Induction\ I-In\text{-}Class\ Worksheet}$ ## Part 1 From the 4 video demonstrations on Faraday's Solenoid experiment, note down your observations. | Demo | | |------|--| | | | | | | A strong "bar" magnet is made by joining many button magnets. This magnet is inserted into and subsequently removed from a solenoid. Note the approximate size and direction of deflection on the galvanometer when the magnet is: | ane garva | meter when the magnet is. | |-----------|---| | a. | Going in: | | b | Stationary inside the solenoid: | | c. | Coming out: | | Demo 2 | | | | nagnet is used this time by using less button magnets. The solenoid is the same as in one the approximate size and direction of deflection on the galvanometer when the | | a. | Going in: | | ь | Stationary inside the solenoid: | | c. | Coming out: | | Demo 3 | | | | ame magnet and solenoid as in Demo 1, the magnet is now inserted and removed at ad. Note the approximate size and direction of deflection on the galvanometer when is: | | a. | Going in: | | ь | Stationary inside the solenoid: | | c. | Coming out: | | Demo 4 | | | same ma | nde solenoid with many less turns of wire than the solenoid is used this time with the
et as in Demo 1. Note the approximate size and direction of deflection on the
er when the magnet is: | | a. | Going in: | | ь | Stationary inside the solenoid: | | c. | Coming out: | ## Conclusion From your observations above, what can you deduce about the factors affecting the induced current caused by electromagnetic induction?