Polygon Worksheet

- 1. Draw polygons whose interior angles have the given sum of measures.
 - a. 900° b. 1800°

 - c. 540°
- 2. The interior angles of an n-gon have average measure 171° .
 - a. What is n?
 - b. Imagine your polygon has flexible joints. What happens to the measure of average interior angles if you flex the polygon to reduce the number of interior angles?
- 3. Draw three different polygons (different number of sides on each), one regular, one convex but not regular, and one concave.
 - a. How many diagonals (non-intersecting) are required to divide each of your polygons into triangles? This is called 'triangulating a polygon'.
 - How many triangles are in any triangulation of an n-gon by diagonals? How can you use triangulations of a polygon to "prove" the formula
 - (n-2)*180° for the sum of the measures of the interior angles of any n-gon?
- 4. Consider the star below.
 - a. Find the sum of the angles marked by X. Can you use the total turn theorem to do this?
 - What is the measure of the angle in each point of the pentagram created inside the star? Is it regular?

