Section 3.1 – Polynomial Functions and Models

Classifying Polynomials:

- Recall: a **polynomial in one variable** is an expression of the form $a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$, where the a_i 's are real number **coefficients**. For nonzero a_n , the expression is said to be of *n*th degree (the highest power is *n*), the **leading term** is $a_n x^n$ and the **leading coefficient** is a_n
- Examples of polynomials that are common

Examples of polynomials that are common		
Degree	Name	Form
0	Constant	f(x) = c
1	Linear	f(x) = mx + b
2	Quadratic	$f(x) = ax^2 + bx + c$
3	Cubic	$f(x) = ax^3 + bx^2 + cx + d$

• Example. Classify $f(x) = 15x^2 - 10 + 0.11x^4 - 7x^3$

The highest power is 4, so it is a 4th degree polynomial. A quartic The leading term is $0.11x^4$

Leading Behavior:

- It is often useful to talk about a function as the independent variable (usually x) gets really large
 (x→∞) or really small (x→-∞)
- As the independent variable gets really large in magnitude (x→±∞), the leading term dominates
 the equation. All polynomials (except the constant function) will tend to ±∞ as x gets large in
 magnitude. Why?
- To determine if it goes to $+\infty$ or $-\infty$, look at the behavior of the leading term, and evaluate it with a positive and a negative
- Example, what happens to $f(x) = -x^4 + 3x^2 + 3x$ when $x \to \pm \infty$?

The leading term is
$$-x^4$$

As $x \to +\infty$, $f \to -(+\infty)^4 = -\infty$
As $x \to -\infty$, $f \to -(-\infty)^4 = -\infty$

• Example, what happens to $f(x) = 12x^5 + 3x^4 + 3x$ when $x \to \pm \infty$?

The leading term is
$$12x^5$$

As $x \to +\infty$, $f \to 12(+\infty)^5 = +\infty$
As $x \to -\infty$, $f \to 12(-\infty)^5 = -\infty$

- Polynomials can be classified according to their degree (highest power) as even or odd (note that
 this may not have same meaning as even and odd regarding symmetry).
 - If a polynomial has an even degree, it goes in the same direction for $x \to \pm \infty$
 - If a polynomial has an odd degree, it goes in opposite directions for $x \to \pm \infty$

You can use the same test as above to confirm this for yourself