
Name:	Per:

Worksheet- Introduction to Specific Heat Capacities

Heating substances in the sun: The following table shows the temperature after 10.0 g of 4 different substances have been in direct sunlight for up to 60 minutes.

Time (minutes)	Air (° C)	Water (° C)	Sand (° C)	Metal (° C)
O (initial)	25° <i>C</i>	25° <i>C</i>	25° <i>C</i>	25° <i>C</i>
15.0 min	28.9° <i>C</i>	26.2°C	30° <i>C</i>	35° <i>C</i>
30.0 min	32.5° <i>C</i>	27.5°C	35° <i>C</i>	45° <i>C</i>
45.0 min	36.2° <i>C</i>	28.8°C	40° <i>C</i>	55° <i>C</i>
60.0 min	40° <i>C</i>	30° <i>C</i>	45°C	65° <i>C</i>

- 3. When you boil water in a pot on the stove, which heats faster, the metal or the water? Explain.
- 4. Why do you think different substances heat up and cool down at different rates?

***Specific heat capacity = the amount of heat needed to raise the temperature of 1 g of a substance by 1 degree. ***

- 5. Based on the definition above, which of the 4 substances do you think has:
 - a) the highest specific heat capacity?
- b) the lowest heat capacity?
- Here are the heat capacities of the four substances: 4.18 J/g °c, 1.00 J/g °c, 0.80 J/g °c, & 0.60 J/g °c. Match & then label each substance with its specific heat capacity on the graph.
- 7. If something has a **high specific heat capacity** will it take a lot of heat or a little heat to change its temperature? Explain. (careful! Use the definition, your graph, and the data from #6)
- Assuming they both start at the same temperature, which will heat up faster, a swimming pool or a bath tub? Explain your thinking.