10. Given the reaction: A + B ₹ C + D
When 1.0 mole of A is combined with 1.0 mole of B, an equilibrium is established in which [A] = 0.2 M, [B] = 0.2 M, [C] = 0.8 M and [D] = 0.8 M → agust = approached from lef-
If, at the same temperature, 1.0 mole of C and 1.0 mole of D is combined. When equilibrium is established, determine what the following concentrations will be:
[A] = 0.2 M, [B] = 0.2 M, [C] = 0.8 M and [D] = 0.8 M from right
11. Given sufficient activation energy, a system not at equilibrium will eventually move toward to equilibrium.
12. Systems will tend toward a position of
13. Systems will tend toward a position of
14. Tell whether each of the following is endothermic or exothermic and state which has minimum enthalpy, the reactants or the products:
a. $Cl_{2(g)} + PCl_{3(g)} \implies PCl_{5(g)} \Delta H = -92.5 \text{ kJ}$
ex o thermic and the products have minimum enthalpy.
b. $2NH_{3(g)} \implies N_{2(g)} + 3H_{2(g)} \Delta H = 92.4 \text{ kJ}$
endo thermic and the <u>veactants</u> have minimum enthalpy.
c. $CH_{4(g)} + H_2O_{(g)} + 49.3 \text{ kJ} \rightleftharpoons CO_{(g)} + 3H_{2(g)}$ ends thermic and the reactants have minimum enthalpy.
15. If the reaction: $Cl_{2(aq)} \rightleftharpoons Cl_{2(g)}$ $\Delta H = +25 kJ$ (ends)
(was proceeding to the right, the enthalpy would be ing. Is this a
favourable change?
16. If the reaction: N _{2(g)} + 3H _{2(g)} ≥ 2NH _{3(g)} + 92.4 kJ (exo)
was proceeding to the right, the enthalpy would be de reas_ing. Is this a
favourable change?
17. For each of the following, decide whether the reactants or the products have greater entropy:
(gas is formed)
Worksheet 2-1 - Equilibrium, Enthalpy and Entropy Page 2

Worksheet 2-1 - Equilibrium, Enthalpy and Entropy