Organic Chemistry: Basic functional groups and nomenclature

Organic Chemistry: The chemistry of compounds containing carbon and hydrogen (and possibly also oxygen, phosphorous, nitrogen, sulfur, or other elements).

Functional groups: A group of atoms that imparts characteristic properties. (Functional groups are how organic compounds are classified).

Examples of functional groups:

CH₃CH₂CH₂CH₃ alkane (only C—H single bonds)

H₂C=CH₂ alkene (contains C=C bond)

HC≡CH alkyne (contains C≡C bond)

CH₃CH₂OH alcohol (contains C—OH bond)

CH₃COCH₃ ketone (contains C=O bond)

CH₃COOH carboxylic acid (contains a □C→OH group)

Naming organic compounds:

Use the following prefixes that refer to the number of carbons in a straight chain. Use the ending –ane for alkanes, -ene for alkenes, -yne for alkynes, -anol for alcohols,-anone for ketones, and –anoic acid for carboxylic acid.

1 meth-	6 hex-
2 eth-	7 hept-
3 prop-	8 oct-
4 but-	9 non-
5 pent-	10 dec-

Questions:

- 1. Name each of the straight-chain organic compounds given in the examples above. Here's the first one: butane.
- 2. Decide which functional groups are polar and non-polar. Which kinds of intermolecular forces exist for each functional group (assume the substances are pure)?
- 3. Based on the intermolecular forces that exist, which functional groups do you expect to have the largest boiling points? (Assume you are comparing compounds with similar molar masses).
- 4. Based on the intermolecular forces that exist, which functional groups do you expect to dissolve easily in water? (In other words, which ones are miscible with water?)