Newton's Laws

OBJECTIVES

Students should be able to:

- 1. Describe Aristotle's Horse Cart theory and what was wrong with it.
- 2. Describe Galileo's experiment that lead to his conclusions about inertia
 - (a) Describe how this experiment is exemplified in modern day amusement parks
- 3. Define in a sentence Galileo's Law of Inertia (Alias-Newton's first Law of Motion)
- 4. Describe what effects an object's inertia.
- 5. Characterize rotational inertia
 - (a) Describe the relationship between an objects rate of spin and the object's distribution of it's mass.
- 6. Give examples of how inertia is demonstrated in everyday life (TOYS)
- 7. Write in words Newton's Second Law of Motion.
 - (a) Describe a force
 - (b) Give the SI and English unit of force.
 - (c) Give the symbols for force in SI and English systems.
- 8. Describe the relationship between force and acceleration.
- 9. Describe the relationship between force and mass.
- Do problems that make proportionality predictions based on Newtons Second Law of Motion. (F=ma)
- 11. Describe the formula for calculating weight from mass. (w=mg)
 - (a) Describe what is means to experience a certain number of "g's."
 - (h) Convert back and forth between g's and m/s2.
- 12. Write in a complete sentence Newton's Third Law of Motion.
- **13.** Apply Newton's Third Law of Motion to Problems.
- **14.** Be able to identify the "reaction force" in a given situation.
- 15. Distinguish between the concepts of mass and weight.
- **16.** Memorize the value for the acceleration of any object near the surface of the Earth. **[a]** Describe what it means to be weightless.
- 17. Utilize Newton's Laws in conjunction with the Kinematics equations from chapter 1 to solve problems