Cellular Respiration, Glycolysis, and Krebs Cycle Review Sheet

- 1. Where does cellular respiration take place? Mitochondria
- 2. Can all living things carry on cellular respiration? YES
- 3. Looking at the cellular respiration equation:
- a. reactants = 1 molecule of glucose, $\hat{6}$ molecules of oxygen
- b. products = 6 molec. Water, 6 molec. Carbon dioxide, 36 ATP
- 4. List two phases of cellular respiration. Anaerobic and aerobic
- 5. What is the purpose of glycolisis and where does it take place?

Splits glucose into 2 molecules of pyruvic acid. In the cytoplasm

- 6. Can all living things do glycolisis? yes
- 7. What is the difference between a facultative anaerobe and an obligate anaerobe?

Facultative - can live with or without oxygen

Obligate – can only without oxygen

- _molecules. This burns up __2_ 8. During Glycolisis the glucose splits to form **__2PGAL**__ _ATP molecules. The two PGAL molecules are changed into **_2 molecules of Pyruvic acid____**. This produces **_4_**ATP
- molecules and __2__ NADPH2 molecules. 9. Glycolisis produces __4_ATP molecules, but you end up with __2_. Because <u>2 ATP molecules are used</u> at the beginning of Glycolysis.
- 10. Reactants of glycolysis = glucose, 2 ATP
 - Product of glycolysis = 2 Pyrovic acid, 2 ATP, 2 NADH2
- 11. Define Krebs cycle.

Aerobic process of respiration that completes the breakdown of glucose started by glycolysis.

12. Define grooming

Process that takes place before the Krebs Cycle.

13. What happens in grooming?

Pyruvic acid is changed into Acetyl

- 14. Name of molecule that guides Acetyl into the Krebs Cycle? CoA (Co-enzyme A)
- 15. What happens to CoA? Nothing just goes back to guide another acetyl into the Krebs Cycle
- Name the major compounds of Krebs Cycle.

Acetyl, oxaloacetic acid, citric acid, ketoglutaric acid, succinic acid

17. What happens to the acetyl when it enters the Krebs cycle.

It combines with water and oxaloacetic acid to form citric acid

- 18. Name the compound that helps Acetyl combine with the oxaloacetic acid. Water
- 19. What is formed when oxaloacetic acid combines with acetyl? Citric acid
- 20. Citric acid is a 6-C molecule that is changed into **Ketoglutaric acid** a 5C molecule, with the help from **H2O**. During this process one **NADH2** is formed and 1 molecule of **CO2** is released.

 21. Ketoglutiric acid is changed to **Succinic acid**, a 4 C molecule, In the process one **ATP** and one
- NADH2 is formed and one molecule of <u>CO2</u> is given off.

 22. Succinic acid is then transformed to <u>Oxaloacetic Acid</u>. In this process <u>H2O</u> is used and <u>FADH2</u> and NADH2 are formed.
- 23. The oxaloacetic acid combines with acetyl and water to form _citric acid_ and restart the Krebs Cycle.
- 24. The Krebs Cycle goes around twice. Once for each pyruvic acid molecule.