## Rational Numbers Worksheet

| Name: |  |  |  |
|-------|--|--|--|

## MA 201

## 1. Which of the following are true?

- (a) The rational numbers are commutative under addition.
- (b) The rational numbers are commutative under subtraction.
- (c) The rational numbers are commutative under multiplication.
- (d) The rational numbers are commutative under division.
- (e) The rational numbers are associative under addition.
- (f) The rational numbers are associative under subtraction.
- (g) The rational numbers are associative under multiplication.
- (h) The rational numbers are associative under division.
- (i) The rational numbers are closed under addition.
- (j) The rational numbers are closed under subtraction.
- (k) The rational numbers are closed under multiplication.
- (l) The rational numbers are closed under division.
- (m) Every rational number has an additive inverse.
- (n) Every rational number has an multiplicative inverse.
- (o) Every rational number has a unique additive inverse.
- (p) Every nonzero rational number has a unique multiplicative inverse.
- (q) One is the multiplicative identity for the set of rational numbers.
- (r) Zero is the additive identity for the set of rational numbers.
- (s) If  $\frac{a}{b}$  and  $\frac{c}{d}$  are distinct rational numbers with  $\frac{a}{b} < \frac{c}{d}$ , then there is a rational number  $\frac{e}{f}$  such that  $\frac{a}{b} < \frac{e}{f} < \frac{c}{d}$ .
- (t) (problem 21 from section 6.1) There are infinitely many rational numbers between 0 and 1.
- (u) (problem 21 from section 6.1) There are infinitely many ways to replace two fractions with two equivalent fractions that have a common denominator.
- (v) (problem 21 from section 6.1) There is a unique least common denominator for a given pair of fractions.
- (w) (problem 21 from section 6.1) There is a least common fraction.

## 2. Find the additive inverse.

(a)  $\frac{3}{5}$