Activity:

Step 1: Cut out four copies of the same right triangle. Identify the leg lengths as a and b and the hypotenuse length as c.

Step 2: Position the triangles to form a square with side length a + b and an inside hole with side length c.

Step 3: Reason as follows:

- · Each of the four triangles has an area of
- . The hole is a square, since the angles have to be right angles because the other two angles are the acute angles in a right triangle and add to 90 degrees. The area of the square hole is c^2 .
- The area of the large square with side length a + b is (a + b)², and its area is the sum of the areas of the hole and the four triangles.

So $(a+b)^2 = c^2 + 4 \cdot \frac{ab}{2}$

(Continued on next page)

Fig. 3.14. Linking a geometric representation with an algebraic representation to validate the Pythagorean theorem