

Surface Area and Volume

For more such worksheets visit www.edugain.com

Answer the questions

- (1) Find the volume of the biggest cone that can fit inside a cube of side 2 cm.
- (2) The radius of a cylinder is halved and the height is doubled. What is the area of the curved surface when compared to the same area previously?
- (3) A sphere is just enclosed inside a cube of volume 12 cm3. Find the volume of the sphere.
- (4) A cone made completely of metal (i.e. it is not hollow) has a base radius of 14 cm, and height of 7 cm. If we melt it and recast it into a sphere, what will be the radius of sphere?
- (5) Find the volume the biggest sphere which can fit in a cube of side 8r.
- (6) An sphere is expanded to a bigger sphere such that its surface area increases by a factor of 4, find the change in its radius.
- (7) Find the surface area of the biggest sphere which can fit inside a cube of side 6r.
- (8) If radius of a sphere is 4a, find its surface area.

Choose correct answer(s) from given choice

(9)	If a cone and hemisphere stands on equal bases, and have the same height. Find the ratio of their volumes.	
	a. 2:1	b. 3:2
	c. 1:2	d. 1:3
(10)	the radius of a hemisphere is 3r, find its curved surface area.	
	a. 8 π r ²	b. 32 π r ²

d. $18 \text{ m } \text{ r}^2$

(11) If radius of a sphere is 3a, find its volume.

a. $4/3 \text{ m a}^3$ b. $256/3 \text{ m a}^3$ c. $32/3 \text{ m a}^3$ d. 36 m a^3

c. 48 π r²