Worksheet: Geometry Chapter 8 Proofs

1. Given: *∠* ABCD

Prove: $\overline{AB} \cong \overline{CD}$; $\overline{AD} \cong \overline{BC}$

Statements	Reasons
1. ZABCD	1. Given
1.2 ABCB	1. Given
2. Draw AC	2. 2 pts. Determine a line
3. $\overline{AB} \parallel \overline{CD}; \overline{AD} \parallel \overline{BC}$	3. Def. of <i>—</i>
4. ∠BAC ≅ ∠DCA	4. Alt. Int. Angles Th.
∠DAC ≅ ∠BCA	
5. $\overline{AC} \cong \overline{AC}$	5. Reflexive Prop.
6. ΔABC≅ΔCDA	6. ASA
7. $\overline{AB} \cong \overline{CD}; \overline{AD} \cong \overline{BC}$	7. CPCTC

3. Given: ∠ ABCD

 $\angle A$ and $\angle B$ are supplementary

Prove: $\begin{array}{c} \angle B & \text{and } \angle C \text{ are supplementary} \\ \angle C & \text{and } \angle D \text{ are supplementary} \end{array}$

 $\angle D$ and $\angle A$ are supplementary

Statements	Reasons
1. 🗁 ABCD	1. Given
2. AB CD	2. Def. of
3. ∠A & ∠D are consecutive int. ∠'s	3. Def. Consec. Int. /'s
∠B & ∠C are consecutive int. ∠'s	3. Del. Collsec. IIIt. ∠ s
4. ∠A & ∠D are supplementary	4 Compass Int Amelos Th
∠B & ∠C are supplementary	4. Consec. Int. Angles Th
5. AD II BC	5. Def. of
6. ∠A & ∠B are consecutive int. ∠'s	6. Def. Consec. Int. ∠'s
∠C & ∠D are consecutive int. ∠'s	6. Del. Collsec. IIIt. Z s
7. ∠A & ∠B are supplementary	7 Common Int. Amelon Th
/ . ∠C & ∠D are supplementary	7. Consec. Int. Angles Th

Prove: $\angle A \cong \angle C$; $\angle B \cong \angle D$

Trove: ZA=ZC, ZB=ZD	
Statements	Reasons
1. ∠¬ABCD	1. Given
2. Draw AC	2. 2 pts. Determine a line
3. $\overline{AB} \parallel \overline{CD}; \overline{AD} \parallel \overline{BC}$	3. Def. of
4. ∠BAC ≅ ∠DCA ∠DAC ≅ ∠BCA	4.Alt. Int. Angles Th
5. $m\angle BAC = m\angle DCA$ $m\angle DAC = m\angle BCA$	5. Def. ≅ Angles
6. $m\angle BAC + m\angle DAC = m\angle DCA + m\angle BCA$	6. Add. Prop. of =
7. $m\angle BAD = m\angle BAC + m\angle DAC$ $m\angle DCB = m\angle DCA + m\angle BCA$	7. Angle Add. Post.
8. m/BAD=m/DCB	8. Substitution
9. ∠A≅ ∠C	9. Def. ≅ Angles
10. $\overline{AC} \cong \overline{AC}$	10. Reflexive Prop.
11. ΔABC ≅ ΔCDA	11. ASA
12. ∠B≅∠D	12. CPCTC

4. Given: \triangle ABCD
Prove: $\frac{\overline{AC}}{\overline{DB}}$ bisects \overline{DB} \overline{DB} bisects \overline{AC}

Statements	Reasons
1.	1. Given
$2. \overline{AB} \parallel \overline{CD} : \overline{AD} \parallel \overline{BC}$	2. Def. of
3. ∠BAC ≅ ∠DCA	3. Alt. Int. Angles Th.
∠DAC ≅ ∠BCA	3. Alt. IIIt. Aligles III.
4. $\overline{AC} \cong \overline{AC}$	4. Reflexive Prop.
5. ΔABC≅ΔCDA	5. ASA
6. AB≅CD	6. CPCTC
7. ∠AEB≅∠CED	7. Vert. Angles \cong Th.
8. ΔAEB≅ΔCED	8. AAS
9. $\overline{AE} \cong \overline{CE}; \overline{BE} \cong \overline{DE}$	9. CPCTC
10. E is the midpoint of AC and BD	10. Def. of Midpoint
11. AC bisects DB; DB bisects AC	11. Def. Seg. Bisector