Kinetics Worksheet - Reaction Rates and Rate Laws

- 1) What are the usual units of reaction rate?
- 2) Concentrations of trace gases in the atmosphere are sometimes expressed in molecules/cm³. If these units are used for the concentrations, then what are the units for the reaction rate?
- 3. The compound RX₃ decomposes according to the equation

$$3RX_3 \rightarrow R + R_2X_3 + 3X_2$$

In an experiment the following data were collected for the decomposition at 100°C. What is the average rate of reaction over the entire experiment?

<u>t(s)</u>	$[RX_3](mol\ L^{-1})$
0	0.85
2	0.67
6	0.41
8	0.33
12	0.20
14	0.16

4. Consider the following reaction

$$8\mathsf{A}(g) + 5\mathsf{B}(g) \to 8\mathsf{C}(g) + 6\mathsf{D}(g)$$

If [C] is increasing at the rate of 4.0 mol L⁻¹s⁻¹, at what rate is [B] changing?

5. For the reaction

$$3A(g) + 2B(g) \rightarrow 2C(g) + 2D(g)$$

the following data was collected at constant temperature. Determine the correct rate law for this reaction.

<u>Trial</u>	Initial [A]	Initial [B]	Initial Rate
	(mol/L)	(mol/L)	(mol/(L·min))
1	0.200	0.100	6.00 × 10 ⁻²
2	0.100	0.100	1.50 × 10 ⁻²
3	0.200	0.200	1.20 × 10 ⁻¹
4	0.300	0.200	2.70×10^{-1}