15 • Chemical Kinetics

RATE LAWS

Consider the reaction: $2 \text{ NO(g)} + \text{O}_2(g) \rightarrow 2 \text{ NO}_2(g)$ 1.

The following data were obtained from three experiments using the method of initial rates:

	Initial [NO]	Initial [O ₂]	Initial rate NO
. <u> </u>	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ s ⁻¹
Experiment 1	0.010	0.010	2.5 x 10 ⁻⁵
Experiment 2	0.020	0.010	1.0 x 10 ⁻⁴
Experiment 3	0.010	0.020	5.0 x 10 ⁻⁵

- a. Determine the order of the reaction for each reactant.
- Write the rate equation for the reaction.
- c. Calculate the rate constant. d. Calculate the rate (in mol $L^{-1}s^{-1}$) at the instant when [NO] = 0.015 mol L^{-1} and [O₂] = 0.0050 mol L^{-1}
- e. At the instant when NO is reacting at the rate 1.0×10^{-4} mol L⁻¹s⁻¹, what is the rate at which O₂ is reactant and NO2 is forming?
- 2. The reaction 2 NO(g) + 2 H₂(g) \rightarrow N₂(g) + 2 H₂O(g) was studied at 904 °C, and the data in the table were collected.

	Initial [NO]	Initial [H ₂]	Initial rate N ₂
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ s ⁻¹
Experiment 1	0.420	0.122	0.136
Experiment 2	0.210	0.122	0.0339
Experiment 3	0.210	0.244	0.0678
Experiment 4	0.105	0.488	0.0339

- a. Determine the order of the reaction for each reactant.
- Write the rate equation for the reaction.
- c. Calculate the rate constant at 904 °C.
- d. Find the rate of appearance of N_2 at the instant when [NO] = 0.350 M and [H₂] = 0.205 M.
- The reaction of ^tbutyl-bromide (CH₃)₃CBr with water is represented by the equation:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

The following data were obtained from three experiments using the method of initial rates:

	Initial [(CH ₃) ₃ CBr]	Initial [H ₂ O]	Initial rate	
	mol L ⁻¹	mol L ⁻¹	mol L ⁻¹ min ⁻¹	
Experiment 1	5.0 x 10 ⁻²	2.0 x 10 ⁻²	2.0 x 10 ⁻⁶	
Experiment 2	5.0 x 10 ⁻²	4.0 x 10 ⁻²	2.0 x 10 ⁻⁶	
Experiment 3	1.0 x 10 ⁻¹	4.0 x 10 ⁻²	4.0 x 10 ⁻⁶	

- a. What is the order with respect to (CH₃)₃CBr?
- b. What is the order with respect to H₂O?
- c. What is the overall order of the reaction?
- d. Write the rate equation.
- e. Calculate the rate constant, k, for the reaction.