15 • Chemical Kinetics RATE LAWS Consider the reaction: $2 \text{ NO(g)} + \text{O}_2(g) \rightarrow 2 \text{ NO}_2(g)$ 1. The following data were obtained from three experiments using the method of initial rates: | | Initial [NO] | Initial [O ₂] | Initial rate NO | |--------------|---------------------|---------------------------|-------------------------------------| | . <u> </u> | mol L ⁻¹ | mol L ⁻¹ | mol L ⁻¹ s ⁻¹ | | Experiment 1 | 0.010 | 0.010 | 2.5 x 10 ⁻⁵ | | Experiment 2 | 0.020 | 0.010 | 1.0 x 10 ⁻⁴ | | Experiment 3 | 0.010 | 0.020 | 5.0 x 10 ⁻⁵ | - a. Determine the order of the reaction for each reactant. - Write the rate equation for the reaction. - c. Calculate the rate constant. d. Calculate the rate (in mol $L^{-1}s^{-1}$) at the instant when [NO] = 0.015 mol L^{-1} and [O₂] = 0.0050 mol L^{-1} - e. At the instant when NO is reacting at the rate 1.0×10^{-4} mol L⁻¹s⁻¹, what is the rate at which O₂ is reactant and NO2 is forming? - 2. The reaction 2 NO(g) + 2 H₂(g) \rightarrow N₂(g) + 2 H₂O(g) was studied at 904 °C, and the data in the table were collected. | | Initial [NO] | Initial [H ₂] | Initial rate N ₂ | |--------------|---------------------|---------------------------|-------------------------------------| | | mol L ⁻¹ | mol L ⁻¹ | mol L ⁻¹ s ⁻¹ | | Experiment 1 | 0.420 | 0.122 | 0.136 | | Experiment 2 | 0.210 | 0.122 | 0.0339 | | Experiment 3 | 0.210 | 0.244 | 0.0678 | | Experiment 4 | 0.105 | 0.488 | 0.0339 | - a. Determine the order of the reaction for each reactant. - Write the rate equation for the reaction. - c. Calculate the rate constant at 904 °C. - d. Find the rate of appearance of N_2 at the instant when [NO] = 0.350 M and [H₂] = 0.205 M. - The reaction of ^tbutyl-bromide (CH₃)₃CBr with water is represented by the equation: $$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$ The following data were obtained from three experiments using the method of initial rates: | | Initial [(CH ₃) ₃ CBr] | Initial [H ₂ O] | Initial rate | | |--------------|---|----------------------------|---------------------------------------|--| | | mol L ⁻¹ | mol L ⁻¹ | mol L ⁻¹ min ⁻¹ | | | Experiment 1 | 5.0 x 10 ⁻² | 2.0 x 10 ⁻² | 2.0 x 10 ⁻⁶ | | | Experiment 2 | 5.0 x 10 ⁻² | 4.0 x 10 ⁻² | 2.0 x 10 ⁻⁶ | | | Experiment 3 | 1.0 x 10 ⁻¹ | 4.0 x 10 ⁻² | 4.0 x 10 ⁻⁶ | | - a. What is the order with respect to (CH₃)₃CBr? - b. What is the order with respect to H₂O? - c. What is the overall order of the reaction? - d. Write the rate equation. - e. Calculate the rate constant, k, for the reaction.