Thermal Energy Worksheet (p. 1) Honors Physical Science

Show "K-U-E-S" on your own paper where necessary. Otherwise answer completely on your own paper.

- 1. A 10.0 g piece of copper wire, sitting in the sun reaches a temperature of $80.0^{\circ}C$. How many Joules are released when the copper cools to $40.0^{\circ}C$? The specific heat capacity of copper is $0.377 \text{ J/(g} \cdot {^{\circ}C})$.
- 2. The specific heat capacity of water is 4.184 J/($g \cdot {}^{\circ}C$). How much thermal energy is required to change the temperature of 700.0 g of water from 25.6 ${}^{\circ}C$ to 75.4 ${}^{\circ}C$?
- 3. How much thermal energy is released when a 201 g piece of blown glass at an initial temperature of $150^{\circ}C$ is cooled to $25^{\circ}C$? The specific heat capacity of glass is $0.837 \text{ J/(g} \cdot {^{\circ}C})$.
- 4. If 2077 J are released to change the temperature of a block of ice initially at a temperature of -20°C to 0°C, find the mass of the ice. Ice has a specific heat capacity of 2.077 $J/(g \cdot {}^{\circ}C)$.
- 5. Mercury has a specific heat capacity of 0.139 J/(g·°C). How many Joules are required to change the temperature of a 50.0 g sample of Mercury from 20.7°C to 100.4°C.

6. A balloon is filled w	ith 0.5 g of air, which has	a specific heat capacit	WI WELLIOIT.	
	Conduction:	Convection:	Radiation:	
sulators.	8. An insulator is so	mething that prevents or slow	ws the transfer of heat.	List three in