MOLARITY EXERCISE: # Sample Problem 01: Molarity from mass of solute: Determine the molarity of a solution prepared by dissolving 22 grams of NaOH in 750 mL of the solution. | Solute
Molecular
formula and | Mass of solute | 'n' moles of solute $n = \frac{m}{Mm} mol$ | Volume of solution in
L | Molarity $M = \frac{n mol}{V L}$ | |--|----------------|--|--|---| | Molar Mass | | Mm | | VL | | Sodium
hydroxide
NaOH
40.01 g/mol | 22 g | $n = \frac{22 g}{40.01 g / mol} = 0.54 mol$ | $V = 750 mL \times \frac{1L}{1000 mL}$ $= 0.75 L$ | $M = \frac{0.54 mol}{0.75 L} = 0.72 \frac{mol}{L}$ | Final answer: Molarity of the NaOH solution is 0.72 M or 0.72 $\frac{mol}{r}$ ### PROBLEM 02: ### MOLARITY FROM MASS OF SOLUTE: A 500 mL solution of glucose $C_6H_{12}O_6$ in water was prepared by dissolving 45.0 grams of glucose. What would be the molarity of the solution? Substitute the appropriate values and determine the molarity with correct units. | Molecular
formula and
Molar Mass
of the solute. | Mass of
solute
'm' | 'n' moles of solute $n = \frac{m}{Mm} mol$ | Volume of solution
in L | Molarity $M = \frac{n mol}{V L}$ | |--|--------------------------|--|----------------------------|------------------------------------| | $C_6H_{12}O_6$ 180. 18 $\frac{g}{mol}$ | | | | | | | | | | | | | | | | | | Expected Result: 0.499 M | Your answer: | |--------------------------|--------------| |--------------------------|--------------|